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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1523

OPTICAL PROPERTIES OF SATELLITE MATERIALS--
THE THEORY OF OPTICAL AND INFRARED PROPERTIES OF METALS
By Research Projects Division
SUMMARY

The probable effects of solar radiation, primary cosmic rays, van
Allen radiation and meteoric dust on the emissive properties of materials
are reviewed in the light of recently published data.

Experimental data on the spectral emittance (.25 to 27 microns) of
metals with polished and carefully abraded surfaces are presented.

A quantum mechanical theory of optical and infrared dispersion in
metals originally developed by T. Holstein* and previously presented in
unpublished Westinghouse Research Laboratories Research Reports 60-94698-
3-R1 and 60-94698-3-R6 (1954 and 1955) is combined with other existing
theories of Umklapp and impurity scattering processes and is shown to
successfully account for the optical properties of metals in the entire
free electron region at all temperatures of interest.

Detailed calculations are presented for monovalent and some poly-
valent metals for which assumption of a symmetric Fermi surface is valid.
Polyvalent and transition metals for which interband transitions are im-
portant and the Fermi surface is not spherical are also considered. In
all, more than a dozen metals, for which reliable experimental data are
available, have been successfully treated.

Calculations of the absorption propeties of super-conducting metals
are also presented in an attempt to determine the extent to which bulk
electron-phonon processes are responsible for infrared absorption by
super -conductors.

*
Holstein's unpublished Westinghouse Research Laboratories Reports are
the source of the entire theoretical development presented in Section IV
of Chapter 3,



INTRODUCTION

This report is a consolidation of technical summaries on the optical
properties of satellite materials prepared and tested by Arthur D. Little,
Inc. under contract DA-19-020-ORD-4857.

Chapter 1 presents the effect of satellite environment on the
emissivity of material. Chapter 2 discusses the spectral emittance of
polished stainless steel, aluminum, and magnesium at 50 degrees centigrade
in the 0.25- to 28.0- micron wavelength region. Chapter 3 is devoted to
the theory of optical and infrared properties of metals.



DEFINITION OF SYMBOLS

SYMBOL DEFINITION

A Bulk contribution to the absorption resulting
primarily from the electron-phonon interactions

A (w,T) Total absorptivity

A Perturbing electromagnetic field

A (%) Amplitive function

AB Bulk absorptivity

AS Diffuse skin absorptivity

AS Absorptivity of a superconducting metal

An Absorptivity of a normal metal

m Optical radius of an electron

mj*(q) Phonon annihilation operator

m ) Phonon creation operator

. ®
T

o Complex polarizability

B (k) Expansion coefficient

B (i) i-th ?rder terms for an electr?n.wﬁich was
certain to be at the state k, initially

B S d

(=) (k) Second order transition coefficient
b (w,T) TO ‘E’Tf
b (W Quantum correction factor

bep (u,o) Quantum correction factor



SYMBOL

DEFINITION
(K T)

Speed of light

_k.q
k,q
€0-€
L+ — %o

Probability per unit time and unit energy
range that an electron at the state E, makes
a transition to a range of final states

C

Yax e} W

ds

A
am k

Distance at which the intensity of light of
given wavelength falls to 1 of that at the
surface €

Thickness at the metal surface in which most
of the optical skin effect is observed

Electric field
Maximum amplitude

Energy density permit volume of the electro-
magnetic radiation field

Fermi energy

Energy gap

k.2 k.2
2 m¥

Energy of a phonon at the state (q)
Energy at the upper edge of the d-band

Forward scattering amplitude



SYMBOL
F (w)

F (E)
F (E,')
f (E)
g (%)
gd, g€

gsd

(T)

(w, T)

(o)

ee

(u,a)

ee (p,a)

=

DEFINITION
Complex forward scattering amplitude

Dimensionless electron distribution
Fermi function at the final stage E,'

Fermi function
Grueneisen formula

Corrections due to electron-electron collisior

Constant

Constant factor representing the strength of
the electron-phonon interaction

dc damping coefficient

Damping coefficient

Electron-impurity scattering frequency
dc damping coefficient

Over-all damping coefficient

Electron-electron collision frequency
Magnetic field

Vertical field strength

Momentum of an electron

Current density

Imaginary part of the scattering amplitude
Boltzmann constant

Absorption coefficient



N (q)

DEFINITION

Momentum states

Fermi momenta for the d-bands

Fermi momenta for the s-bands

Momenta corresponding to the highest occupied
levels in the d- and s-bands

Mean free path
Wavelength

Critical wavelength

Mass of the lattice

Impurity scattering

Electron mass

Effective mass of a conduction electron

Three values of effective mass

Rest mass of an electron

Effective mass of d-electrons

Effective mass of s-electrons

Mass of a photon

Permeability

=y
€

=~
=]

Complex index of refraction

Po

vl phonon number density

number of phonon states for E , which are
occupied d



SYMBOL DEFINITION
n Index of refraction
n, Effective number of conduction electrons per

unit volume

ng Effective number of electrons per unit volume
ng Effective number of electrons in the s-band
;s Total number of s-electrons qualified to make

transitions to the empty d-states

ny Number of empty states in the d-band
n_ Number of paired electrons per unit volume
n, Number of unpaired electrons per unit volume
v Frequency
vg Limiting frequency
W Angular frequency
W Frequency characteristic of the electron
wq Phonon frequency
PS Power absorbed by a superconducting metal
Pn Power absorbed by a normal metal
< P> Average of P (E,)
(n) . L
< P(o) > Average probability per unit time
P(k kz*tgqtop) Probability permit time for the electron to make
the indicated transition
+
P(E;)(El ks) Probability permit time for a conduction electron

to make the indicated transition



SYMBOL

P

(n)
(o)

(n)
(s)

k, ky

(El) sd

)

Momentum

DEFINITION

Probability of a transition by a joint action
of the electromagnetic and phonon fields

Probability for an electron initially at the
state of energy E_ in the s-band to make a
transition to the final state of energy Ezl
in the d-band

Photon mementum

Perturbed wave function

h , phonon wave vector

Reflectivity
Total reflectivity

Surface resistance of superconducting metals
Surface resistance of normal metals

Constant

Constant

Constant

Real part of the scattering amplitude

Position vector
Classical radius of the electron
Effective classical radius of electrons

(*)

Mass density



SYMBOL DEFINITION

5 (E) Density of states function

5, (E), 6d (E) Density of states

6n (o) Density of states function of a normal metal

evaluated at the Fermi level

S Poynting vector
s Electron position coordinate within metal
superscript (-) Phonon absorption
subscript (-) Photon absorption
Zo Spontaneous magnetization per gram atom at
0°K
>(T) Spontaneous magnetization per gram atom at
T°K
ao dc electrical conductivity
3 (w) Optical conductivity
2
m e
3 (0) e
m*
o
Bn High frequency conductivity of m normal metal
55 Complex conductivity o, + 52 i of m super con-
ductor
as(w) Total scattering cross section per scattering
center
as (w,T) Dispersion cross section per electron
T Absolute temperature
T Superconducting transition temperature

t Time
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W (w,T)

<W>

sd

DEFINITION

dc relaxation time
Relaxation time
dc relaxation lifetime of an electron

hﬁg Debye temperature
Angle between the mementa k, and g

Original undistorted periodic potential

Distorted potential

Longitudinal phase speed of sound

Longitudinal phase velocity of sound

Sample Volume

Atomic volume
Electron-lattice potential
Small change in the potential

Fermi velocity of electron

Fermi velocity of electrons

Joule heat produced per unit time and unit
volume within the conducting medium

Rate of energy expenditure

Power expenditure due to one electron per
unit time

Net amount of power absorbed per s-electron



SYMBOL

=l

=l

£, ', &"

11

DEFINITION

Power expenditure of a super conductor

Weight factor due to the density of states of
the d-band

wl
[e]
ep

Principal - axis coordinates

Dilatation

Absorption of a phonon and photon of energy
h w and Eﬂ’ respectively

Energy terms in resonance factors

Surface impedance of superconducting metals
Surface impedance of normal metals

Penetration distance into the metal

m*
T m e
4 o

Relaxation time of a conduction electron
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CHAPTER 1

EFFECT OF SATELLITE ENVIRONMENT ON THE EMISSILVITY OF MATERIALS

SECTION I. INTRODUCTION

The space around the earth is permeated by rather strong radiation
and particle fluxes of four general types:

1. Electromagnetic radiation from the sun, ranging from radio
frequencies to X-rays;

2. Primary cosmic rays, consisting mostly of high-energy protons
and o particles;

3. Charged particles trapped by the earth's magnetic field in
belts encircling the earth (Van Allen belts);

4. Meteoric dust particles.

The impact of any or all of these types of particles or radiation
can alter the optical properties of various materials when applied in
a sufficient dose. The effects of radiation and impact damage in three
groups of materials, namely, metals, semiconductors and inorganic solids
are examined. Organic materials will not be considered in this study.

Table I indicates the nature of radiation damage known to occur in
the three selected groups of solids by the types of radiation considered
here. The effects tabulated to the right of the heavy line may be
expected to be of principal importance in bringing about changes in such
optical properties as emissivity, absorptivity and reflectivity.

The occurrence of such changes is contingent upon exceeding a certain
threshold dose, specific with each material and each type of radiation.
Some of the radiation effects may be reversed by thermal activation.
Thus, at any finite temperature above absolute zero only a part of the
total effect is retained, another part being lost by concurrent recovery.
Upon prolonged exposure most of the radiation damage effects tend to a
state of saturation.

The radiation levels existing in the near extraterrestrial space,
according to the most recently published data,are reviewed and their

special effects upon materials are considered.
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SECTION II. RADIATIONS IN THE EARTH'S ENVIRONMENT
A. ELECTROMAGNETIC RADIATION

The sun is the source of a very large portion of the electromagnetic
radiation reaching the earth. In emitting most of this radiation, the
sun radiates like a blackbody at a temperature of approximately 5,500°
to 6,000°K. The total irradiance at the average distance of the earth
from the sun (and outside of earth's atmosphere) is about 2.00 cal/cm®/min,
or 0.140 watt/cm=, [1] Approximately 25 percent of this radiation lies
in the visible spectrum. The region of the spectrum in which the photon
energy of the solar radiation is comparable with the ionization energies
in solids (a few electron-volts) lies in the ultraviolet (wavelength
shorter than 400 muy). Only 12 to 15 percent of the total solar radiation
is contained in the spectral interval from O to 400 mu and of that approx-
imately 10 percent falls in the near ultraviolet from 300 to 400 my.
Below 340 mp, direct measurements from high-altitude rockets have yielded
the following spectral distribution of ultraviolet radiation [2]

Wavelength Spectral Irradiance
340 my 110 pw/cm® /my
300 70
260 17
220 3

The irradiance values may be expressed in terms of quantum flux
densities (number of quanta of given frequency per cm® per second) by

recalling that at 200 mpy wavelength one quantum (hy) has an energy very
approximately equal to 10~Y! ergs. Thus at 200 mu, a spectral 1rrag1ance

of 1 pwlcm® corresponds to a quantum flux density of 1012 cm™® sec™

The extreme ultraviolet region borders on the soft X-ray region
which appears in the solar spectrum with a intensity far exceeding that
corresponding to the blackbody temperature of the photosphere. This
results from the fact that most of the X-ray em1531on originates in the
solar corona at temperatures of the order of 10 ©°F. The wavelength of
maximum X-ray emission is centered roupd 50 A and the total X-ray irra-
diance in the range between 2 and 100 A is found to be approximately
0.14 pw/em® [3]; in units customarg in X-ray dosimetry this level would
correspond to 0.014 rads sec (one rad being equivalent to 100
ergs of X-ray radiation energy absorbed in one gram of matter.)

Because the X-ray quanta are very energetic, the photon flux density
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corresgond1n§ to this irradiance is relatively low, of the order of
10 cm™" sec

At times of extreme solar activity (solar flares), the level of
X-ray irradiance may increase by,a factor of 10 or more, and X-rays of
wavelengths as short as 1 to 2 A may be emitted [4].

In addition to the electromagnetic radiation of solar origin, there
is probably a high-energy (y-ray) component resulting from cosmic ray
particle collisions with the residual gas atoms in the upper atmosphere.
While no definite data are as yet available, it is generally thought
that the total irradiance from this source is extremely small.

B. COSMIC RAYS

Outside the Van Allen radiation belts in outer space [5] the primary
cosmic radiation is estimated to consist mostly of protons (80 percent)
and o particles (approximately 18 percent); it appears that there are no
electrons in the primary cosmic radiation —— not counting electrons from
the solar corona. There are some neutrons emitted by the sun which reach
the earth. The remaining 2 percent of the particle spectrum consists
of nuclei of heavier elements, ranging up to iron in atomic welght
Average energies of these primary particles are of the order of 10°
electron volts (ev), but the distribution extends up to energies of the
order of 10%% ev. A certain fraction of energetic particles is con-
tributed by solar flares. The interaction of the primary cosmic rays
with the upper atmosphere consists of collisions with nuclei of the
atmospheric elements, in the course of which a large variety of secondary
particles are produced. The secondary particles consist of atomic frag-
ments of various types, and these in turn produce tertiary fragments,
and so on. The net result of this process is a nucleonic cascade which,
in the case of very energetic primaries, gives rise to extensive showers
of particles reaching the earth's surface. A by-product of the interaction
of cosmic-ray primaries with the atmosphere may be represented by the
Van Allen radiation belts which consist of rather dense belts of charge
particles (presumably mostly electrons, but also including protons) trapped
by the earth's magnetic field. In the inner belt the particle flux
density reaches maximum at an altitude of 2,000 miles from the earth's
surface, while in the outer belt the maximum is reached at about 10,000
miles in the equatorial regions. Beyond 10,000 miles, the radiation
belts diminish steadily and disappear almost completely beyond 40,000
miles. The maximum particle flux density in each belt is about 40,000
particles cm 2 sec™t. The particle flux consists of electrons having
energy of at least 0.65 mega electron volts (mev) and protons of energy
at least 10 mev. The exact proportion of these two types of particles
is not known, nor has their origin been clearly established.
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C. MICROMETEORITE FLUX

Particles of meteoric origin come in a very wide range of sizes
and flux densities. Direct optical and radar observations indicate that
in a mass range between 0.0l and 100 milligrams (mg), there are approxi-
mately 10° meteors incident on the whole earth's atmosphere per day;
this amounts to a total mass of approximately 200 kilograms per day.

Data on the number and size of large meteorites (500 g to 100 mg)
are sporadic. On the opposite side of the distribution, terrestrial
observations are incapable of recording incidence of particles smaller
than about 0.01 mg, although the flux density of such micrometeorites
or meteoric dust must be fairly large, as indicated by light scattering
phenomena such as zodiacal light. A combination of direct observational
data and extrapolations from them as given by Lovell [6] is presented in
Table II.

Most of the meteorites are believed to originate in the solar
system (asteroidal material, see reference 7). Their velocities are
found to lie between approximately 11 to 70 km/sec. The minimum veloc-
ity corresponds to the terrestrial escape velocity (11.3 km/sec), the
lowest velocity with which a meteoric body from space can strike the
earth. The maximum velocity results from the combination of earth's
orbital velocity (30 km/sec) and the velocity of escape from the solar
system which at the distance of earth is 42 km/sec. Hence the largest
velocity with which a meteoric body at its perihelion can make a head-
on collision with the earth is 72 km/sec.

The flux density of meteoric particles (number of particles per cm®
per second) is obtained by multiplying the particle densities Table II,
(Column 4) by their velocity. At an average velocity of 40 km/sec the
estimated flux density of particles in the 1072 to 10”7 mg range is
obtained as 4 x 10”° particles per cm® per second.

Direct observations of micrometeorite impacts have been obtained
only recently [8]. The results of partial analysis of data from the
Explorer I satellite indicate that the average flux density of particles
about 4 microns in size (approximately 10 1% g mass) is approximately
107% ecm™® sec” ! and of particles 10 microns in diameter (approximately
6 x 10717 g) is about 1077 em~2 sec™l. This appears to be in fair
agreement with the data of Table II.
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SECTION ITITI. RADIATION DAMAGE IN SOLIDS

A. METALS; GENERAL CONSIDERATIONS

One effect that may conceivably lead to an increase in emmissivity
of a metal upon extensive irradiation is the generation of defects that
scatter conduction electrons (interstitials and vacancies) and thus
increase resistivity. Spectral emissivity of metals at long wavelengths
(infrared radiation, A < 5 p) obeys fairly accurately the Hagen-Rubens
law [9]:

E = (4p/2)° (1)

where  denotes the resitivity. A relative increase in resistivity
(dp/p) will cause (at a constant wavelength) and increase -, (dEA/EA) in
emissivity; thus, for example, a 10-percent increase in » will cause a
5-percent increase in emissivity. We shall examine in paragraph A2 under
what conditions high energy radiations may cause such changes.

Another effect that may increase emissivity of a metal surface ex-
posed to satellite environment is the mechanical damage caused by impacts
of micrometeors. Under these impacts the profile of an optically smooth
surface may become altered so as to scatter incident radiation diffusely,
rather than to reflect it specularly. In addition to the geometrical
(profile) effect, it may be expected that the mechanical impacting will
also increase the resistivity in a manner similar to that observed in
work hardening of metals. We shall not attempt to take the latter effect
into account because very little is known at present about the mechanical
and thermal phenomena that take place at a point of impact of an extremely
fast (v ~ 10® cm/sec) massive particle upon a metallic surface.

1. Effect of Micrometeors

Spectral emissivity of an optically smooth metallic surface is an
intrinsic property of the material, as indicated by the Hagen-Rubens
law. Strictly speaking, the emissivity defined by this law is the normal
emissivity (emission in the perpendicular direction only); actually,
the angular distribution of the emissivity must be considered. The
emissivity pertinent to the present problem (radiation from a satellite
into the empty space) is the hemispheric emissivity obtained by integration
of the angular emissivity over an entire hemisphere. When the analysis
is performed [10], it is found that the hemispheric emissivity at low
(normal) emissivity values is larger by a factor of 4/3 than the normal
emissivity. At higher emissivities the ratio of the two is smaller and
becomes 1.0 for a blackbody (see Table III).
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TABLE III. RATIO OF HEMISPHERIC TO NORMAL
EMISSIVITY OF A METALLIC SURFACE 11

En (normal) 0 0.1 6.2 0.3 1.0
E(hemispheric) 1.33 1.225 1.145 1.075 1.0
E
n

When the profile of the originally smooth metallic surface has been
changed by numerous pits and indentations, incident radiation is diffusely
scattered, and the hemispheric emissivity must again be considered. When
the indentations are large compared with the wavelength of radiation
emitted and of smooth profile, the hemispheric emissivity of the surface
remains essentially unchanged. In a general case, when the size of the
indentations is comparable with the wavelength, diffraction effects be-
come significant and a rigorous treatment of the scattering may be quite
complex [11, 12].

However, independent of the exact nature of the scattering process,
the hemispherical emissivity will be increased by surface indentations
under conditions when multiple reflections can occur (cavity effect).
This situation can be taken into account by an assumption that each
impacting particle forms a crater of an area, Ac’ and emissivity, Ec,

(larger than the normal emissivity of the surface). Then the resultant
emissivity, Ep’ of the damage surface is:

= NAE - NA
Ep NC R (1 NC C)Eo (2)
where NC is the number of indentations per cm®, and E0 is the emissivity

of the original surface (all emissivities are hemispherical). When

Nc = Ac'l, the surface is completely covered with indentations and Ep

becomes equal to Ec'

The choice of an appropriate value for EC depends to a considerable

extent on the geometry of the indentations. If their depth is at least
equal to their diameter, the effective emissivity, Ec’ of the crater

area would tend to the value 1 (one black body). Studies of crater
formation in metallic targets made at the University of Utah [13] indi-
cate that, at velocities up to 1.5 km/sec, the volume of the crater is
proportional to the energy of the projectile; thus, for instance, in
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aluminum, the constant of proportionality is 0.78 x 10719 cm®/erg. If
the validity of this relation is extrapolated. to meteoric velocities,

a particle of 10719 gram-mass incident with a velocity of 40 km/sec (800
ergs kinetic energy) would produce a crater of 6.2 x 1078 cm® volume.
Assuming a crater area between 12.5 to 79 x 1078 em® (4 to 10 p diameter),
one obtains for the depth of penetration, values between 0.5 to 0.08 cm,
respectively; if this were actually the case, the meteorites would bury
themselves very deeply indeed; or even perforate the metal. The extrap-
olation of the data from Reference [13] may not be justified, however.
An alternate way of estimating the volume of the craters may be obtained
by equating the energy of impact to the energy required to heat, melt
and vaporize the metal occupying the crater cavity (including the pro-
jectile). Using the same data as above and taking for:

H . = 2.6 k cal/mole and H = 68 k cal/mole (3)
fusion vap

one obtains for the volume approximately 1.8 x 107° cm® and for the depth
between 1.5 x 1072 to 2.3 x 10”2 cm (for the same crater diameters as
above); on this estimate, the depth is considerably smaller but the
depth-to-diameter ratio is still large enough to justify the use of
black body emissivity for the crater area. Preliminary data on cratering
by high-velocity microparticles [14] seem to indicate that the diameter-
to-depth ratios remain between 1.5 to 2.5 at lower velocities (about

1 km/sec) but rather abruptly'change to about 8 to 10 (shallow craters)
when the velocity exceeds approximately 10 km/sec. Until more detailed
results are reported in full, the simplest assumption compatible with

the preceding estimates are used, namely that the crater area radiates
as a black body, i. e. EC = 1.

It is now possible to estimate the time in which the existing flux
of micrometeorites will cause a measurable increase in emissivity by
10 percent.

Assume the original emisivity is 0.10 and the flux of micrometeorites
of 4 p size is 107¢ cm™2 sec™' (paragraph B). Assuming a crater diameter
of 10 p (79 x 1078 cm® area), one obtains a full coverage of the surface
after approximately 1.3 x 10° impacts per cm®. This would require 1.3
x 1012 seconds, or approximately 2 x 10% years. At this damage dose,
the hemispherical emissivity of the surface would reach a value E_= 1.
However, to increase the original emissivity of 0.1 by 10 percent? i.e.,
by 0.01, only approximately one one-hundredth of the '"saturation' dose
would be required, i.e., approximately 400 years.

If the smaller, more numerous micrometeorites contribute significantly
to the surface damage, or if the area of the individual craters is larger
than estimated above, the same increase in emissivity may occur in still
shorter time.
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2. Effect of High Energy Radiation

The radiation damage effects from the high energy particle component
of the cosmic radiation is considered first. No observational data are
available regarding their effect upon resistivity and emissivity of
metals. In their absence, we will have to extrapolate from the experi-
mental results obtained with deuterons and electrons at energies in the
1 to 15 mev range.

The detailed atomistic picture of the damage process is very
complex (see references 15, 16 and 17) and in many respects still not
completely clear. The following is a brief description of the process,
sufficient for the present purpose. An energetic, charged nucleon of
relatively small mass (protion, deuteron, a parricle), upon entering
the metal, dissipates most of its energy in exciting the orbital electrons
and only a small fraction in exciting thermal lattice vibratioms. As
it passes near the nuclei of the metal, some of the Coulomb encounters
are occasionally so close that sufficient energy is transferred to
nucleus and it becomes displaced. The threshold energy for such an event
is determined by the condition that about 25 ev must be transferred to
the lattice nucleon in the collision; however, many displaced atoms
acquire energies in collisions which are several times larger than this
threshold energy so that they in turn may be able to produce secondary
displaced atoms. The entire region along the path of the primary knock-
on in which the number of displaced atom-vacancy pairs (Frenkel defects)
may reach several percent of the concentration of the normal atoms, is
sometimes called a '"thermal spike' because of the flash heating effect
(~10%°K for ~10"-* sec) that occurs there. When the original particles
have extremely high energies, such as encountered in cosmic ray protons
(~10° eV), they may first cause spallation reactions in the metal or
produce cosmic ray '"stars" (a shower of fragments); the secondary frag-
ments may then in turn collide with lattice atoms.

Most of the radiation damage in metals disappears rapidly by re-
combination and annealing unless the irradiation is effected at tempera-
tures below about 10°K and the sample is maintained at that temperature
level after irradiation. Even at low temperatures, the number of dis-
placed atoms does not increase linearly with the total number of bombard-
ing particles which passed through the sample because of self-annealing
(radiation annealing). The defect-forming and self-annealing processes
compete with each other according to a differential relation:

dN = oqd? - BNdT )]
in which N denotes the concentration of Frenkel defects, 2 the total

flux of particles per cm©, and o and B are constants. Upon integration,
this equation leads to a logarithmic relation which was first derived
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empirically by Marx, Cooper and Henderson [18] in a form:
b= AL - exp(-BD)] , (%)

describing the observed dependence of increase of resistivity of metals
upon bombardment by 12 mev deuterons. For copper, the constants have
values A =~ 0.5 u ohm cm and f ~ 4.8 x 101 cm®/deuteron. After exten-
sive irradiation, ., approaches A as a limiting value (saturation).

When copper was irradiated at low temperatures (about 10°K) by
12 mev deuterons to a total dose of 2 x 10*7, D ¢m™® its resistivity
increased by approximately 0.2 i ohm cm. After annealing to 77°K,only
41 percent of the initial increase remained and, after further annealing
to 300°K, only 7 percent of the increase was left, i.e., 0.014 p ohm
cm [19]. Since the resistivity of copper is approximately 1.7 p ohm
cm, the final effect represents an increase of less than 1 percent; at
saturation, it would reach about 2 percent after a total dose of approxi-
mately 10 D em™Z.

Data for a few other pure metals (Ag, Au, Fe, GCo, Ni and W) and
alloys (CusAu and CuZn) are also available (seec reference 16, p. 424).
Iron is claimed to suffer larger resistance increase than other metals
(however, no data are given), and it appears to retain a larger per-
centage of it upon annealing to room temperature. No work on alloys of
technological importance (e.g., aluminum alloys or stainless steels)
and at elevated temperatures has been published as yet.

Since copper has been investigated in greatest detail, we shall
base the estimate of the radiation damage effect by the satellite
environment on the data for copper as given above.

The principal difference between accelerator particles which have
been employed in radiation damage studies and cosmic radiation is in
their relative energies; the cosmic ray primaries are much more energetic.
In the primary proton flux above the atmosphere, approximately 70 percent
of the whole distribution lies between 0.1 to 1 bev, and about 15 percent
is between 1 to 100 [20]. The energy of 300 mev is taken as an approxi-
mate center of the distribution.

The average energy loss per centimeter of path length of 300 mev
protons in copper is about 1/10 that of 10 mev [21]; thus, we may
estimate that a radiation damage resulting in 2 percent increase in re-
sistivity would be reached after a total dose of approximately 101 p
cm™®. In Section IT, paragraph B is given a maximum proton flux density
of 4 x 10® P em™2 sec™! in the Van Allen radiation belt. Thus, the total
dose for 2 percent increase in resistivity (1l percent increase in emis-
sivity, see Section III, paragraph A) would be accumulated in 2.5 x 10'%

sec or approximately 107 years.
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In view of this low rate of radiation damage, we may consider the
effect of cosmic ray electrons that constitute only a small fraction of
the total radiation flux as completely negligible.

B. SEMICONDUCTORS:

GENERAL CONSIDERATIONS

Semiconductors differ in their optical properties from other solids
in that their behavior changes from quasi-metallic to quasi-dielectric in
a fairly sharp frequency interval, the position of which depends upon the

nature of the particular semiconductor.

In the intrinsic semiconductors,

this transition (absorption edge) results from excitation of electrons
from valency band to the (normally empty) conduction band when the photon

energy is equal or greater than the energy gap, h > E

Eg range from 0.14 ev in PbSe to 3.37
8i at 1.35 ev near a typical median.
edge is located in the near infrared,

At wavelengths shorter than 0.92 p, 1.

silicon is almost opaque, much like a
the infrared) it becomes transparent.
is at approximately 1.7 u.
tion results from the small number of
the conduction band.

While the absorption index,(nk),

. The values of
ev in Zn0 with ée at 0.72 ev and
Thus with silicon, the absorption
at a wavelength A = 1.24/Eg = 0.92 .
e., in the visible spectrum, intrinsic
metal; at longer wavelengths (in

In germanium the absorption edge

In the infrared, beyond the edge, some absorp-

free carriers normally presents in

which is the imaginary part of the

dielectric constant, is small in the infrared, the real part (n® - k%)
may attain fairly large values; the reflectivity is also fairly large,

typically about 0.40 to 0.50 in Si or

Ge. Under these conditions it is not

permissible to assume that the emissivity is approximately equal to (1-R)

as in the case of well-reflecting metals.
of Kirchhoff's law for a semi-transparent body must be used.

Instead, a generalized form
McMahon {22]

analyzed the case of a partially absorbing body bound by two parallel planes
(a slab) and derived a formula for its spectral emissivity:

Ek =

(r - RA) (1

-1 (1 - R}\T}\)-l (6)

where Ry and T, are spectral reflectivities and transmissivities, respect-

ively.

A

E, = A (1-R) [1-R (1-

Since 1 - T) is the absorptivity, A), we may also write:

A(l - R)
1 - R(L - A)

Ax)]-l = @)

Most of the optical studies of semiconductors were made by absorption
[23] and no data are available on their emissivity; however, we can by

means of Equation (6)

analyze the existing data.

By differentiation we
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obtain for a relative change of emissivity:

dE = 1 -R . dA (8)
E 1 - R(1 - A) A

assuming R is independent of A, which is approximately true in the wave-
length range considered here. 1If we take as a typical value R = 0.5, we
see that the variation of emissivity resulting from a variation in absorp-
tivity lies between % (dA/A) for A = 1 (100 percent absorption) to 1.0(dA/A)
for A = 0 (zero absorption). These formulas can be used in evaluating

the existing data on radiation damage in semiconductors (Section III, para-
graph B2).

1. Effect of Micrometeorites. Since the effect of bombardment by micro-
meteorites is presumed to consist predominantly in a geometrical change

of surface profile, we may expect that the evaluation performed for metals
in Section III, Paragraph Al is applicable also in the case of semicon-
ductors. Thus the time for a 10 percent increase in emissivity would again
be of the order of 100 years.

2. Effect of High Energy Radiation. Radiation damage effects have been
studied in a great number of investigations; a good review of the present
status is given in the 31 papers collected in the special issue of Journal
of Applied Physics, August 1959 [ 24] . Most of the work reported there is
concerned with carrier transport properties and complex semiconductors. The
variety of experimental detail is overwhelming and not always pertinent to
the present problem. Only one paper, Fand and Ramdas [ 25}, deals directly
with optical properties (infrared transmission) of a simple semiconductor
(silicon) as affected by irradiation by neutrons, deuterons and electrons,
and even this case turns out to be quite complex and not yet fully explored.
We shall limit the following discussion to this relatively simple case.

Major changes in optical properties of silicon are obtained after a
total dose of the order of 101" particles/cm® (deuterons or fast neutrons)
and saturation is approached after a total dose of about 10*% particles/cm®.
The largest effect is observed on the long wavelength side of the absorption
edge, where the absorption may increase by several orders of magnitude (at
1.2 p by a factor approximately 10®). Farther in the infrared, however,
the effect becomes much smaller and eventually reverses, the absorption
being actually reduced after irradiation. This reduction is a result of
removal (trapping) of carriers by the Frenkel defects.

In the near infrared, on the short wavelength side of the absorption
edge the absorption is increased uniformly by a factor of about 2. In
addition to these over-all changes, a number of discrete absorption bands
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is produced by irradiation, the strongest of which occur at 1.8 ¢ and

3.9 11 wavelengths: weaker bands are observed at 3.3, 5.5, 6.0, 20.5, 27.0
and 30.1 ... The radiation damage éffects do not ammecal out ar readily

as in the casec of metals and wmost ol the effect can be retained at tempera-
tures around 300 K.

In view of this complex behavior it is difficull to give a single
figure for the magnitude ol the radiation damage effect upon absorptivity
and emissivity. We may state only that large changes in emissivity may
occur after irradiation by a total flux of about 10%" particles/cm”.

The maximum {lux of fast protons in the Van Allen belts is approxi-
mately 4 x 104 P em™ sec™t (Section II, paragraph B), and we may estimate
that the radiation damage efficiency of 300 mev protons is about one-tenth
of that of 10 mev deuterons for which the experimental data were given
above. Thus a time of the order of 10® years would be required to obtain
the major changes in absorptivity and emissivity (Equation 8), described
above. Since at a certain wavelength (say, 1.2 y) the relative increasc
may be very large (factor of 10¥ or more) the time requred to ohserve a
small (10 percent) change in emissivity may be shortened by a factor of
10% or more, thus bringing the critical exposure time to the order of 100
vears.,

C. OTHER INORGANTC SOLIDS: GENERAL CONSIDERATIONS

The inorganic solids we shall censider here may be grouped in three
classes: (a) ionic crystals such as alkali halides used in infrared opti-
cal systems; (b) crystals of high refractive index such as used in white
pigments: and (¢) non-crystalline solids such as Si0 and various glasses.

With ionic crystals, the best known radiation damage cffect is the
generation of color centers (F-centers) by absorption of photons of suffi-
cient cnergy (Eg > 2 to 5 eV). A comprehensive review of color centers
in alkali halides may be found [26]. F-centers may be described as an
anion vacancy with a trapped electron attached to it; other types of elec-
tron vacancy sites, such as F, V and M centers have also been identified.
These color centers give rise to fairly board absorption bands in the
visible or ultraviolet spectral regions; their position in the spectrum
is determined by the nature of the crystal. 1In sodium chloride, the center
of the F-band is at approximately 400 mp and its half-width (at 25 C) is
approximately 100 mp. In potassium bromide, the F-band is centered at
630 my. Color centers have been studied only by transmission. Emissivity
of radiation-colored crystals has apparently never been investigated. It
is, however, possible to make reasonable estimates of spectral emissivity
by means of the theory of partially absorbing bodics as presented in Section
111, paragraph B.
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Crystals of high refractive index used as white pigments are mostly
of a mixed ionic-covalent type (ZnS, TiO,, BaTiO,) and thus not so pronc
to formation of ion.c defects such as F-centers. They respond ta radiation
by solarization and photo-sensitization, i.c., processcs involving pholo-
oxidation or photoreduction of the impurity atoms presents in the host
lattice. A most conspicuous example of solarization is coloring of calcium
titanate pigment containing copper impurity by ultraviolet Tight, which
may be described as a photorcduction reaction [27].

Ca0 - Ti**t0- + hy—sCa0 - Ti'70 + 2¢ | (9)

2¢ + Cu®'—=Cu (color center).

Similar reactions were studiced by Weyl [ 28] and Goodeve [29], largely be-
cause of their importance for light resistance of paints. It is now well
established that such reactions can be almost completely eliminated by
use of very pure materials.

In the third category of solids, we should include silicon monoxide
which is being successfully used as a coating for emissivity control of
temperature of the Vanguard satellites [30]. Unfortunately, almost nothing
is known about the radiation coloration behavior of this material except
an isolated observation (in this laboratory) that a transmitted flux of
approximately 10 r of 40 kv X-rays is incapable of producing a visible
change in the transparency of a Si0 film 0.2 p thick.

Radiation coloration of glasses has been extensively studied and a
review with complete bibliography has been given by Sun and Kreidl [ 31].
Here too the most prominent effects can be attributed to photo-oxidation
and reduction of cations capable of change of valency (Mn, Fe, V, Ce).
Glasses of high photosensitivity to ultraviolet light have been developed
by Stookey [32] for photoengraving purposecs; high-energy radiation sensitive
glasses (mainly of the K-Ba-Alphosphate type) have becn developed for
radiation dosimetry.

In the opposite direction, the need for radiation resistant glasses
led to the development of cerium oxide compositions that remain colorless
in the visible spectrum even after exposurcs of the order of 10° of ener-
getic y-radiation [33] . They do form, however, strong absorption bands
in the ultraviolet. 1In view of such a variety of behavior of different
glass compositions it i1s obvious that any gencralizations are of limited
value and each case will have to be considered individually.

Most types of color centers, in particular F-centers, can be destroyed
by heat, infrared radiation or visible light. When irradiation is done
at moderate temperatures, the competition between rate of production of
color centers and their destruction results in saturation of the ultimate
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density of centers.

1. Effect of Micrometeorites. In absence of any experimental data on
surface damage of crystals and glasses by micrometeors we may use the same
arguments as in Paragraphs Al and Bl of Section III and conclude that the
time for a 10-percent increase in emissivity would be probably of the
order of 100 years.

2. Effect of Radiation. F-Centers in alkali halide crystals are readily
produced by irradiation with short-wave ultraviolet or soft X-ray radi-
ation. A total dose of approximately 100 ergs/cm® absorbed energy may
produce typically optical absorption at the center of the band of the order
of k = 10 cm™*. This is a very strong absorption, corresponding to almost
complete opacity in 1 cm thickness; thus a crystal irradiated to this
density would presumably possess emissivity near 1.0 at the center of the
band.

According to the data given in Section II, Paragraph A, the radiation
flux density in the far ultraviolet (at 200 mp) is of the order of 10 ergs
cm™Z sec”™! (per 1 mp bandwidth). The dose required for intense coloration
would therefore be of the order of 10 seconds. The solar X-ray flux would
cause the same coloration in approximately 1,000 seconds approximately

17 minutes.

Solarizable crystals (impure pigments) become colored by ultraviolet
or X-ray radiation at rates depending upon concentration and type of im-
purity. No consistent data are available, but the times required to pro-
duce visible coloration by solar ultraviolet radiation are of the order of
hours to days. Equivalent X-ray levels are of the order of 104 to 10°r.
High purity pigments appear to be virtually immune to visible coloration
by ultraviolet radiation and X-rays. For instance, a high-quality commercial
white paint (DuPont Dulux alkyd base with 95 percent TiO, and 5 percent
Zn0 pigment) was irradiated in this laboratory with 50 cv X-rays at flux
density approximately 107r); a barely visible darkening was observed which
disappeared after three hours exposure to ambient daylight.

A similar high resistance to coloration by X-rays was observed with
silicon monoxide (Section ITI, Paragraph C). Glasses, on the other hand,
are usually quite susceptible to coloration by radiation, presumably be-
cause of the impurities present. No data are available about the rate
of solarization of glasses by ultraviolet radiation. It is well known,
however, that visible coloration of commercial container glasses by ter-
restrial solar radiation may occur within a few decades; this period may
be estimated to the order of one year in the extraterrestrial environment.
The same effect is obtained by medium energy X-rays after exposure to
approximately 10° to 10°r. The corresponding time at the level of 0.014
r cm “sec” ! (Section II, Paragraph' A) would be of the order of one to ten
years.
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CHAPTER 2

SPECTRAL EMLTTANCE OF POLISHED STAINLESS STEEL, ALUMINUM,
AND MAGNESTUM AT 50 C IN THE 0.25-28 1 WAVELENGT! REGION

SECTLON T. INITRODUCTION

This chapter describes the results of an experimental study of the
spectral cmittance of polished stainless steel, aluminum, and magnesiam
in the wavelength range 0.25-27.0 microns, at 50 C. This work was under-
taken for the purpose of determining the changes in emission propertics
accompanying varying degrees of surlace roughness ol the specilic samples
under study.

SECTION II. DEFINITLONS AND THEORY

Thermal radiation propertics of a particular matcerial are character-
ized by a dimensionless parameter; hemispherical spectral vmittance,
o(7,1), defined as the ratio of the spectral emissive power, J(X,T), (power
radiated per unit surtface area per unit wavelength interval) of a wmaterial
at wavelength, )y and temperature, !, to the spectral cmissive power ol a
black body radiation, Jj, (A,T), at the same wavelenglh and temperature:

Ja,T) )
Ly o ehiald o (10)
J (A1)

b

Jp{A,T) for the black body radiator is given by the Planck radiation
cquation:

C A
J (1) - 1)
NEN = (n
e -1
where ¢y and ¢ are the usual radiation constants. In the ideal case of

a perfectly smooth, flat material, this dimensionless paramcter becomes
the spectral emissivity, and 1s considered an intrinsic material property.
Because surface conditions strongly influence the intensity and spectral
distribution of the ewitted radiation, the analogous parametcr tor real
materials Is defined as emittance. [34]

For vpaque materials, Kirchhoff's law velates the emittance, (X,T),
and reflectance,r(n,T), by the equation:
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ti(}\')T) + r()\)T) =1 (12)

Measurement of spectral emittance is usually carried out at rela-
tively high temperatures by a direct comparison of radiation emitted by
the sample with radiation emitted by a black body at the same temperature.
In this case, the equation:

. _ I T)
c(n,T) = Jb(}"T) (13)

can be employed for evaluation of results. This method of measurement

is not applicable at low temperatures, particularly for poor emitters

such as metals, since the low intensity radiation emitted by the sample

is nearly equal to the radiation from the surrounding environment which

is reflected by the sample and also received by the detector. To surmount
this difficulty, some form of reflectance method must be employed.

In choosing one of many types of reflectance methods, one must bear
in mind the properties of the samples under consideration. The method
of using a collimated beam incident on the material and reflected directly
to the detector is applicable only to specular reflectors. For the case
of partially diffuse reflectors, such as metals of varying degrees of
surface roughness, it is essential that one measure the intensity of radi-
ation reflected into the entire hemisphere above the sample. For the
wavelength range 0.25 to 2.5 microns, the integrating sphere can be employed;
in the infrared region, one must seek other methods.

Before describing the method used in this particular study, for the
infrared region one should note an analogous method which has been uti-
lized for measuring diffuse spectral reflectance [351.

The basic components consisted of a heated hohlraum (~ 1500°F), a
water-cooled sample (~ 150 F), and an optical system. The sample pro-
truded from the inner wall of the hohlraum which acted as a black body ref-
erence. For a given wavelength, the diffuse radiation emitted by the
hemispherical wall and reflected normally by the sample was compared to
the energy emitted by the black body. The ratio of the net deflections of
the recording system is a direct measure of the normal component of diffuse
spectral reflectance. The principal problems in this method are:

a. to obtain a strict temperature uniformity over the entire
surface of the hohlraum wall,

b. to maintain the hohlraum at a high and very stable temperature,
and

c. to keep the sample at a much lower stable temperature inside the
hohlraum.
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SECTION IV, CONCLUSIONS

The cflects ol the radiation eaviroment upon the optical properties
ol the seleeted three classes of materials are summarized in Table 4. The
figurcs given there represent best estimates basced on available data for
typical representative materials. However, selection of a "typical" re-
prescantative from such highly diversificd classes of materials as sc¢mi-
conduciors, or "inorganic solids" is highly arbitrary and iL must be re-
placed in final analysis by a carcful study of cach specific case.
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Consideration of these problems directed us to the alternative method
now to be described.

The basic principle underlying the method of measurement of spectral
emittance employed in this study can be described by referring to FIGURE
1. Consider a sample at constant temperature, T, surrounded by a ther-
mostatically controlled shield at Temperature, Ty. This shield forms a
black body which irradiates the sample from all angles within a hemispher-
ical solid angle. The resultant normal component of diffuse radiation
emitted by the shield and reflected from the sample emerges through a
small circular aperture in the shield and is then imaged onto the detector
by a suitable optical system. A gold-plated chopper mirror is mounted
in the beam such that the detector alternately receives radiation from
the sample and from a reference black body held at temperature, T,. The
net signal received by the spectrometer detector represents the difference
in radiant power between the two sources, and can be expressed as:

Sy = [C(K,T) J(A,T) + r(X,Ty) + W(A,T') - J(K,TO)] KAwtA X (14)

where
e(\,T) 1is the emittance of the sample at A,T
J(7\,T) the black body radiant intne$ity at X, T
r{\,T) the reflectivity of the sample
W(A,T') any additional background radiation at same temperature T'
J(A,T,) the radiation intensity from the blackbody at T,.
The constants, k, A,w, t, A\, correspond to the sensitivity of the detector,
the area of entrance slit, the solid angle of view, the effective trans-
missivity of the optical system, and the wavelength band passed by the

exit slit of the spectrometer, respectively. Note that r(X\,T) represents
the normal component of diffuse spectral reflectance.

SECTION III. EXPERIMENTAL METHOD FOR THE INFRARED [ 36]
The actual method consists of two runs per sample:

a. The blackbody shield is held at the same temperature as the
sample, T, and



34

CHOPPER
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Figure 1. Basic Principle of Operation
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b. the blackbody shield is held at a temperature of liquid nitrogen
T-.

Assuming that any additional background radiation is always constant and
equal for both runs, we have the expression for the difference in signals
between the two runs at A,T:

s = s1(N,T) - so(A,T) = r(}\,T)[J(}\,T) - J(}\,Tg)] KAWEAN (15)

Now if a gold-plated sample with reflectance = 1 is used as a refer-
ence standard, the expression becomes:

s = s1(0,T) - s2(0,T) = [ J(A,T) - J()\,Tz)}kAwtiQ\ (16)

The ratio of s/s gives the normal component of diffuse spectral
emittance through Kirchhoff's law.

s
— = r(}\,T) = Q(K,T) (17)
s
With this method it is important to maintain similar conditions in
enviromental temperature for all runs in order that the background radi-
ation term, W(A,T'),will always cancel out. Also, careful temperature

control of sample blackbody shield and reference blackbody is necessary
for accurate reproducible results.

A schematic diagram of the actual system employed for this study
is illustrated in FIGURE 2. A sample, s, was mounted in a holder which
is heated to the desired temperature by water coils. An iron-constantan
thermocouple was inserted through an approximately 0.11l-inch diameter hole
in the side of the sample to a position close to the front center surface
of the sample. With the use of a Leeds and Northrup type K potentiometer
and galvanometer, the temperature of the sample was controlled to * 0.5°C.

The thermostatically controlled shield consisted of a core wound
with two sets of coils. For run No. 1, heated water was circulated through
both the sample holder and one set of the shield coils. For run No. 2,
the water in the shield was removed, and liquid nitrogen was forced through
the other set of coils at a pressure of 5-15 pounds. The sample shield,
and mirrors, M; and My, were enclosed in a dry box which was flushed with
nitrogen in order to reduce the water vapor which would enhance the ab-
sorption in the water bands of the spectrum in a variable manner.

The reference blackbody, consisted of a dewar flask with a blackened
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inside surface and was maintained at ice temperature with crushed ice.

A gold-plated chepper blade was located at the focal point such that
radiation from the sample passing through the silver chloride window W
and radiation from the reference blackbody at 0°C was alternately focussed
by mirrors, My and My, on the entrance slit of the spectrometer set at a
width of 1000 p. A sodium chloride prism was used in the 2 to 15 p wave-
length range; for the 14 to 27 u range, a cesium iodide prism was used,
together with a polyethylene film impregnated with carbon black and placed
at the entrance slit to filter out stray short wavelength radiation.

During a typical run No. 1, the sample, was allowed to stablize at
the desired temperature by monitoring a Sargent Thermonitor temperature
control unit which heated a water reservoir. Throughout the run it was
necessary to keep a constant check on the sample thermocouple reading
and to correct for the lag in water reservoir temperature and sample temp-
erature. Instead of taking a continuous spectrum, the data was recorded
as a series of points predetermined from the prism calibration chosen to
avoid atmospheric absorption bands as much as possible. This method of
recording served as a check on any substantial sample temperature drift
as well as representing essentially an average reading for any particular
wavelength. All readings were converted to microvolt units and calculations
were carried out in accordance with Equations (16) and (17).

SECTION IV. THE INTEGRATING SPHERE AND EXPERIMENTAL METHOD

The reflectance measurements for the 0.25- to 2.5- p wavelength
region were made with a Beckman 24500 Reflectance Unit in combination
with a Beckman DK-2 monochromator. The integrating sphere and accessory
optics are illustrated in FIGURE 5. For the samples under study, the
total reflectance (specular plus diffuse) was measured by passing mono-
chromatic radiation through the sphere's entrance ports directly onto the
sample and reference plate at an angle of approximately 5 degrees from the
surface normal. The two components of totally reflected radiation are then
multiple reflected throughout the interior surface of the integrating
sphere. A detector located 90 degrees to the sample surface normal re-
ceives the diffuse radiation illuminating the sphere. A tungsten lamp
source and lead sulfide detector were used for the 0.45- to 2.5- u region;
for the 0.350- to 0.650~ p region, the tungsten lamp and photomultiplier
were used, and for the 0.250- to 0.400- p region, a hydrogen lamp source
and photomultiplier were employed.

In order to determine the 100 percent reflectance signal of a refer-
ence, two Mg0 plates were prepared by coating them with magnesium oxide
smoke from a burning magnesium ribbon. Both plates were then mounted in
the two exit ports of the integrating sphere and a signal, r;(d), was
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process, one would expect & noticeable effect for short wavelength reflec-
tion. In this region the light will be trapped by the grooves and pits and
become diffusedly reflected, thus increasing the percentage of diffuse
reflection and decreasing the total reflection by trapping. At long wave-
length this process does not occur, diffuse reflection becomes negligible
and the surface has a greater effective smoothness. Similar blocks of
aluminum and magnesium were polished by the usual abrasion methods.

In all the experimental curves this trend toward greater reflectivity
(i.e. lower emittance) with longer wavelengths is observed. Also, compar-
ison of samples of the same material but of different surface roughness
reveals that they all approach essentially the same value at long wave-
lengths where the effects of surface irregularities become less important
to the reflection process. In regard to most of the reported curves one
may note a certain irregularity at approximately 3 u and 14 p. At the
3-p point the Beckman Integrating Sphere data are joined to the Perkin-
Elmer data, and it is not unreasonable to expect some slight discontinuity,
especially when one notes that the lead sulfide detector response will
tend to fall off at this point. (Note also the change in wavelength scale
at 3 p on the graphs.)

The 14-u region represents the transition from the sodium chloride
prism to the cesium iodide prism and the introduction of the polyethylene
filter to reduce short wavelength scattered light. Finally, the slight
increase in emittance at very long wavelengths (25 p and greater) in some
cases is unreal and probably produced by an increase in scattered light
which the detector receives from the enviroment.

Experimental results for three samples of stainless steel 316 are
shown in FIGURES 6, 7, and 8; a very rapid decrease in emittance occurs
between 0.25 p and 0.75 p at which point the curve acquires a much more
gradual slope until the region of 26 p where samples No. 2 and No. 3
assume a value of approximately 0.06 u; however, sample No. 4 at that
point has an emittance of about 0.085 which coincides with the greater
roughness of its surface recorded by mechanical measurements.

A sample of stainless steel 304 was also measured and is shown in
FIGURE 9. This exhibits the characteristic slope and approaches a probable
value of 0.075 at 26 p. This curve indicates a slight error in the tran.
sition region of 2.5 p to 6.5 p noted previously. The deviation around
6 p can be attributed to water vapor absorption. Also the apparent rise
at 24 to 28 pu is due to scattered light.

The emittance curves for aluminum 20-24 are shown in FIGURE 10.
Measurements throughout the 0.25- to 27.0- p range were carried out on
sample No. 3. The sharp decrease in emittance between 0.25 and 0.5 p is
not quite as striking as for the stainless steel but is still a characte-
ristic at short wavelengths. In the wavelength interval 0.5 to 1.0 p,
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recorded throughout the entire spectrum. This signal represents the ratio
of intensity reflected by the sample port to that of the reference port.

IMl 09

() = _T;;_TKS—__ (18)

This procedure was repeated with the MgO plates in reversed position,
giving the term ri(d):

T ()

. _ (19)
rz(}\) = IMl(}‘)

An averaged 100 percent signal for the MgO reference is then expressed

as:
2 =)
rt () + ra(d) e v IS
£ () - - (20)
o 2 2 IMl IM2

The difference between the true 100 percent response of the recorder
and the MgO 100 percent signal represents a correction term:

Ar' () = 100 - ré(l) (21)

If a sample now replaces one of the reference plates, one measures
the ratio of sample to reference reflectance, r', and when the correction
term is included:

Is (22)

T,

If the true reflectance of MgO reported in the literature [ 38, 39,
40, 41, 42] is denoted as:

r(d) = r'(d) + Arc')(}\) -

R = —— (23)

then the absolute reflectance of the sample is easily calculated as a
product of Ry and r.

I - p I, 7. I
ry = tRg = [1 | [ o } g (24)
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Again utilizing Kirchhoff's law, Equation [20], the spectral emittance
in the 0.25- to 2.5- p range can be determined.

SECTION V. PREPARATION OF SAMPLES

The front surface of all samples were initially roughened with a
variety of emery papers. The aluminum and magnesium were then brought to
a fine polish with the use of a grinding wheel and alumina powder.

The stainless steel samples were electropolished with a solution con-
sisting of:

300 ml orthophosphoric acid
530 ml glycerine
90 ml water.

After the completion of the experimental measurements the arithmetic
average surface roughness in the X and Y direction was determined on a T
and H Talysurf-Model 3 instrument. The results, reported as center line
average roughness, are listed in Table V. It should be mentioned that the
magnesium surface acquired a cloudy appearance due to the formation of an
oxide layer.

SECTION VI. EXPERIMENTAL RESULTS

Measurements were made on samples of magnesium, aluminum,and stainless
steels of various surface roughness throughout the 0.25- to 27.0- p wave-
length range at 50°C temperature. The stainless steel samples consisted
of blocks approximately 2 x 2 x 0.5 inches in size having their front sur-
face electrolytically polished to a bright mirror appearance. "In general,
physical and chemical properties which have been determined on mechanically
polished surfaces are not characteristic of the bulk metal. However, if
the necessary precautions are taken electropolishing methods can produce
a brilliant, smooth film-free surface with properties characteristics of
the metal rather than of the method of preparation." [43]

The use of electropolishing in the preparation of these samples was
made with the intention of removing the amorphous deformed layer (termed
the Beilby layer) produced by the initial abrasion treatment. However,
as evidence by the surface profile measurements and photomicrographs, the
samples still have scratches and pits. The pitting is commonly observed
in the case of stainless steel due to the differential attack of the multi-
phase alloy. From consideration of the physical nature of the reflection
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3. Variations in atmospheric absorption;

4. Sample temperature errors;

5. Use of a large slit width;

6. Prism calibrations;

7. Amplifier drifc;

8. Other, such as slight shifts in optical alignment.

The calculations (1 above) were based on the assumption that the gold
standard had a reflectivity equal to 1. However, it is known that elec-
trolytically deposited gold has a reflectivity of approximately 0.98 between
7 p and 14 ;o wavelengths {447 (FIGURE 13). A percent error of 2 percent
in the calculated reflectivity of a sample will result from a 2-percent
error in the assumed reflectivity value for the gold standard. This is
easily seen from Equation (17) where R(A,T) is now the true reflectivity
of gold, and r'(X\,T) equals the measured reflectivity of the sample.

| s _x(,T)
(LD =TT E TR0 (25)

Thus, the connected value of reflectivity is given by:
r(a,T) = R(A,T)r' (A,T) (26)

A. CHANGES IN TEMPERATURE OF THE ENVIROMENT (2 ABOVE)

Changes in the temperature of the environment should also be con-
sidered when discussing scattered radiation, since any such change will
also affect the intensity and spectral distribution of scattered radiation.
These temperature variations were kept to a minimum by carrying out the
experiments in a temperature-humidity controlled room. In addition all
measurements were made during equivalent time periods each day to main-
tain similar conditions.

B. VARIATIONS IN ATMOSPHERIC ABSORPTION (3 ABOVE)

Although the experimental equipment was located in a temperature-
humidity controlled room, large daily variations in humidity will affect
the radiation intensity within the strong absorption bands, and particularly
in the 6-u region. With a large number of data points one can take into
account such discontinuities when drawing the curves. For the path length
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there appears to be a definite bump (rising from a value of about 0.14

at 0.5 p to a small peak of 0.18 at 0.8 p). A thin Al,05 film on the sur-
face indicating an absorption resonance frequency may account for the peak
at this point. The curve then continues to decrease with longer wavelengths
in the usual manner; the 3-u transition region occurs as in previous curves.
The emittance levels off at a shorter wavelength than that of stainless
steel and assumes an average emittance of 0.035 from 8 u to 27 u. A curve
for No. 1 has been drawn in this region for comparison and one notes its
value to be 0.023, indicating a smoother surface. Data for samples Nos.

1 and 4 have also been drawn between 0.25 p and 2.5 u. In general, all
three samples have nearly the same emittance, with the same bump between
0.5 pand 1.0 p. This fact indicates that either the surface roughnesses
of all three samples are essentially equivalent, or else an Als0. film

on the three surfaces is covering up any effect of differing surface con-
ditions which otherwise would be observed if the film were absent.

The emittance curves for aluminum 70-75 are shown in FIGURE 11. This
exhibits a shape very similar to that of aluminum 20-24, with the typical
bump in the 0.5-1.0 p region. Also, between the wavelengths of 6-27 pu it
takes on a fairly level emittance of about 0.035 as in the case of aluminum
20-24. However, in this case, sample No. 3 appears to have a higher emit-
tance than samples No. 1 and No. 4 in the 1.0-3.0 p region.

The curves for magnesium are shown in FIGURE 12. 1In the 0.25- to
2.5- p region one observes a striking decrease in emittance with longer
wavelength in addition to a significant difference between the values for
samples Nos. 1, 3, and 4. Sample No. 4 has a much greater emittance through-
out this region whereas No. 1, although having a larger emittance than
No. 3, does approach it around 0.75 u.

The bump which appeared between 0.5 p and 1.0 pu in the case of aluminum
does not appear in the magnesium curves at all. The measurements out to
27 p were made on sample No. 3 with greatest attention, although the short
wavelength data definitely indicate that all three samples approach a
similar value for the longer wavelengths, as would be expected. Between
6 p and 27 o the emittance assumes a constant value of approximately 0.055.
Again the apparent rise from 22 to 27 p is unreal and due to scattered
light.

SECTION VII. DISCUSSION OF EXPERIMENTAL ERRORS

The chief source of error for the 2-27 p wavelength range are:
1. Possible error in the true reflectivity of the gold standard;

2. Changes in temperature of the enviroment;
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Figure 13. Reflectance of Electrolytically Deposited Gold
REFERENCE Smithsonian Physical Yables, 9th ed., 1954, p. 552.
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in air involved, absorption in other regions of the spectrum will change
the general level of measured reflectivity to a negligible degree.

C. SAMPLE TEMPERATURE ERRORS (4 ABOVE)

Errors due to sample temperature drift are negligible, the variation
being less than + 0.5 C, during measurements. Any effects of such tempera-
ture variation on the radiation intensity were undetectable at the low
temperature level of 50°C.

D. INSTRUMENT ERRORS (5, 6, 7, 8 ABOVE)

Errors arising from items 5, 6, 7 and 8 are difficult to assess. By
using a constant slit width throughout measurements, allowing an adequate
warm-up time for the electronic equipment, and making careful initial
optical alignment and prism calibrations, these errors were minimized.
Constant checks on the amplifier gain and zero points indicated that the
drift was negligible. From the scatter of data points, the results point
to a probable over-all error of /r = £ 0.02. One of the advantages of this
method is the elimination of a pyrometer or standard black body which would
cause additional errors in experimental results. Also, it eliminates the
necessity of absolute flux calibrations and the subsequent tedious calcu-
lations.



CHAPTER 3
THEORY OF OPTICAL AND INFRARED PROPERTIES OF METALS

SECTION I. INTRODUCTION

The interactions of metals with an external electromagnetic field
manifest themselves in different forms depending on the different spectral
ranges that are involved. Two particular examples may be cited, the dc
electrical propertics which we observe by applying a static electric
field, i.e., the zero-frequency limit and the optical and infrared
dispersion characteristics which are observed by means of proper optical
apparatus where the frequency spectrum extends from the far infrared to
the ultraviolet.

The present work is concerned with the normal dispersion character-
istics in the optical and infrared range of the spectrum and the manner
in which these properties are related to the dc electrical properties
and other lattice parameters of metals. Inasmuch as we are concerned
with normal dispersion in contrast to anomalous dispersion, the frequency
spectrum that is involved in the present work must be sufficiently re-
moved from the anomalous region in which photoelectric resonances of
bound electrons become important. Most of the metals that have been
studied are found to have their lowest resonances in the wavelength region,
0.3 ~ 1.0 micron, and normal dispersion is observed for wavelengths
longer than these values.

According to the free electron theory of metals, the free valence
electrons are responsible for the normal dispersion of optical and in-
frared waves as well as for electrical conduction.

Ever since the discovery of electrons and Sommerfeld's successful
explanation of the phenomenon of thermionic emission based on the free
electron picture of metals and on the Thomas-Dirac statistics, it has
been a popular notion that both optical dispersion properties and elec-
trical properties may be explained on a common theoretical basis and that
these two aspects of metallic properties are interrelated in a rather
simple manner. Granted that the simple free electron description of
metals is valid, such a notion finds justification in that both the
optical dispersion and dc electrical properties are described by the
equation of motion of the conduction electrons subject to the general
description in terms of Maxwell's equations, the difference between the
two aspects of metallic properties arising solely from the different
spectral ranges that are involved.

Therefore, it may be expected that various frequency-dependent
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optical quantities such as the 6ptical conductivity, +(w), and the di-
electric constant, ¢(w), which described the optical dispersion properties,
should also describe the dc electrical properties such as the dc electrical
conductiveity, o, and dielectric constant, . , when we take the limit

w0 in various dispersion equations. On the other hand, the temperature-
dependence of various optical quantities may be predicted from the more
widely studied electrical properties.

Along with the development of quantum mechanics and quantum
statistics, much progress has been made on the theory of electrical
conduction in metals during the past 50 years, and current theory 1is
successful in explaining the observed electrical conduction phenomena
both qualitatively and quantitatively in most of the noble and alkali
metals, and qualitatively in the transition metals. Modern physics is
successful in explaining qualitatively some of the salient features
found in alloys, e.g., Matthiessen's rule, dependence of resistivity on
the relative concentrations of the constituent metal atoms in a random
alloy, some unusual properties of the transition metal alloys, etc.
Compared with what has been done on the electrical properties of metals,
surprisingly little progress has been made on the theory of optical and
infrared dispersion in metals. In fact, there is no satisfactory theory
available that can predict the dispersion properties in the entire free
electron part of the spectrum of even the noble and alkaline metals.
Existing theories enjoy a limited success in various segments of the
spectrum. However, the less said the better with regard to the tran-
cition metals and alloys. This is surprising for theoretically, a
description of optical and infrared dispersion properties is expected
to be very much like that of electrical properties, at least to the ex-
tent that both involved free conduction electrons, and differ from each
other only in the extra frequency-dependence appearing in thé optical
quantities.

Theoretical discussions on the behavior of metallic conductors under
the influence of electromagnetic waves were first given by Hagen and
Rubens on the basis of the classical Maxwell theory of electrodynamics,
and later by Drude on the basis of the free electron description of
metals and Maxwell's theory. Drude's theory applies to a wider range
of the spectrum than the Hagen-Rubens theory, and the two theories are
identical at the longer wavelengths where the optical conductivity,

s(w), can be replaced by the dc conductivity, c(0).

The limitations that are inherent in these theories have been
pointed out in a number of references upon comparison with experimental
data. In general, the theories fail in the higher frequency region of
the spectrum (i.e., fw < KT) and also at low temperatures. The Drude
theory has found a qualitative success in a variety of metals in that
it offers a good fit to the experimental dispersion curves, and yet
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fails quantitatively in that the dc conductivity predicted by the best-
fit theoretical curves is always smaller than the measured values. The
exceptions are some liquid metals such as mercury and gallium. In any
case, the theory fails completely at low temperatures. Despite these
limitations, the classical free electron theory of Drude has remained the
most successful of the existing theories in the sense that it presents
all aspects of dispersion properties in a rather self-contained manner,
especially when combined with the Kramers-Kronig relation. Although
there have been some attempts made to improve the Drude theory so that

it would be applicable to a wider range of the spectrum and to extend it
to multivalent and transition metals, they fail to remove the limitations
that are inherent in the original Drude theory since these attempts were
not made through a rigorous theoretical formulation, but rather by
introducing additional unknown parameters.

According to the classical theory, the optical absorptivity
(= emissivity) of a pure metal vanishes at very low temperatures in
contrast to experimental observations, and a metal can have a nonvanish-
ing absorption or resistivity (Restwiderstand) only if a substantial
amount of impurities is present. Although the theory of anomalous skin
effect (i.e., anomalous in the sense that the distance traveled by an
electron between collisions is larger than the skin depth, 1=vF T > 68)

proposed by Reuter and Sondheimer, and later elaborated by Dingle, has
succeeded in explaining a part of the observed absorption at low temper-
atures, the gap between the theoretical and experimental values still
remains to be accounted for and amounts to anywhere between 20 percent
~ 80 percent of the measured values of the total absorptivity.

Practically all of the existing quantum mechanical theories of
optical and infrared absorption in metals have been developed since 1954,
and were designed to remedy the gap between the classical theoretical
values and the observed values of the absorptivity in the near infrared
and at low temperatures. However, none of these theories show attempts
to formulate different aspects of the optical and infrared dispersion
properties in such a self-contained form as is possible in the classical
Drude theory. They are confined to derivations of absorptivity as a
function of temperature and wavelength in a particular segment of the
infrared spectrum. The most outstanding of these theories are those
of Holstein, and those developed more recently by Gurzhi and Silin of
Russia. It was Holstein who originally suggested that, unlike what
is predicted by the theory of anomalous skin effects, a bulk absorption
process in which an electron absorbs a photon near the surface and then
diffuses into the bulk interior of the lattice emitting a phonon to
conserve energy and momentum, may play a significant role at low temper-
atures. Holstein calculated absorptivity in the near infrared region
(A ~ 1p), and the results were already sufficient to prove that, at
low temperatures too, the bulk electron-phonon collisions are not less
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important than the skin effects of Reuter, Sondheimer, and Dingle. More
recently, Gurzhi made an attempt to formulate the total absorptivity
including both the skin effects and the Holstein's bulk mechanism to be
applicable to a wider range of spectrum than that defined by

Aw >> Ko >> KT. Gurzhi's result was, at least in its form, more general
than that of Holstein's formulas, and will be shown to agree identically
with the abosrptivity derived in the present work in the limit,

%w >> Ko ,KT. Following the semi-classical calculations by Silin of the
contribution by the electron-electron collisions to the absorptivity
based on the Fermi-liquid theory of Landau, Gurzhi improved Silin's

method by use of a more rigorous Fermi-liquid theory. He pointed out

that the electron-electron collisions may be significant at high frequency
and at low temperature, and subsequently incorporated these into his pre-
viously obtained formula for the total optical absorptivity. The theo-
retical method used by Gurzhi is essentially that of obtaining pertur-
bation solutions to the kinetic equation for the electron distribution
functions taking into account various collision terms. This is very

much like what was done by Wilson in his calculations of various dc
electrical properties. Holstein used a straight forward quantum mechanical
perturbation theory and calculated various transition matrix elements
using a semi-classical form of electromagnetic perturbation. There are,
of course, other sophisticated theoretical techniques available for
calculating the optical properties of metals such as'the method of
temperature-dependent Green's functions developed by Martin and Schwinger
and independently by Kogan, and also the S-matrix formulation which was
used by Gurevich and Uritskii in their theory of infrared absorption in
crystals, mainly for semi-conductors, in the presence of external magnetic
field and in the photoelectric region. However, the remarkable success
found in the results obtained by Holstein and Gurzhi in the high-frequency
region, and also in the results obtained in the present work for a wider
range of spectrum, attest to the fact that a straightforward quantum
mechanical perturbation theory is satisfactory for both qualitative and
quantitative calculations of the optical properties, at least in the

free electron region of the spectrum. On the other hand, a quantitative
calculation of optical properties in the resonance region (i.e., for

A S 1u for many metals) can be offered when the general results obtained
on photoelectric absorption in crystals, such as that by Gurevich and
Uritskii, are extended to include the resonance absorption in metals.

The main body of the present work consists of calculations of
various optical and infrared dispersion and electrical properties as
well as other related lattice parameters based on Holstein's bulk mechan-
ism. In this sense, the theory by Gurzhi is the closest to the present
work inasmuch as it is also based on the same mechanism for electron-phonon
processes. Although Gurzhi's formula for absorptivity agrees with the
present theory identically in the near infrared, where Aw >> K3, KT,
there are some important differences between the two, and the shortcomings
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of Gurzhi's theory will be explained.

A theory may be judged on the basis of the following obvious set
of criteria:

(2) It has to provide a good fit in frequency-dependence to the
optically-observed curves for various optical quantities;

(b) The theory when best fitted to the optical curves should re-
produce various dc electrical and lattice parameters in satisfactory
agreement with the measured values;

(c) 1In order to satisfy the correspondence requirement in the
classical region, the theory should produce successfully the well-known
and time-tested classical formulae for various dispersion properties in
the classical case of small hw or high temperature; and

(d) As another requirement of the correspondence it should be
able to reproduce the well known temperature-dependence of various dc
electrical and some thermodynamic properties in the limi't of zero
frequency or infinite wavelength.

None of the existing quantum mechanical theories succeed in
satisfactorily meeting all four of these criteria. Some salient features
of the present theory shall be summarized itematically, and it is expected
that this will also serve as comparison between the present theory and
the existing theory.

In the present theory, the quantum mechanical corrections to the
classical dispersion formulae are mostly revealed in the frequency- and
temperature-dependence in the over-all damping coefficient, [ (w,T).
[(w,T) differs significantly from the corresponding dc value, 1 (T),
which is the one used in the classical Drude and Hagen-Rubens tﬁeories,
only in the spectral and temperature ranges where the quantum effects
are important. This is conveniently represented by introducting the
relation:

'(w,T) = b (m,T)fb (T) (27)

where the b-factor is particularly important in the quantum mechanical
region of high frequency and low temperature. Aside from the appearance
of the b-factor, the present theory offers various optical and infrared
dispersion formulas which bear very close resemblance to the well-known
classical formulas. Thus, it is clear that establishing the frequency-
and temperature-dependence of T'or b will occupy the heart of the present
theory. Results for non-transition metals apply mostly to those metals
which have ~ T®-dependence on temperature of the electron-phonon part
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of the resistivity at low temperature. The transition metals are shown
to exhibit, in temperature and frequency dependences, properties distinct
from those of non-transition metals. The ferromagnetic and paramagnetic
transition metals are investigated independently. It is found that the
electron-phonon part of the dispersion formulas for transition metals for
which the number of s-electrons is completely compensated by the number
of empty states (positive holes) in the d-band, leads to~T3-dependence

of dc resistivity, while the formulas for those transition metals in
which the total number of S-electrons are not sufficient to close the
d-band, lead to a negative exponential temperature-dependence at very

low temperatures. There are further differences in temperature-depend-
ences between ferromagnetic and paramagnetic transition metals which

are offered by the theories of Weiss and Heisenberg, at low temperatures.

Generally, the over-all damping coefficient, '(w,T), is a sum of
the contributions by the electron-phonon collisions, electron-electron
collisions, and the impurity scattering such that:

1—|(LL)1T) =Fep (U)>T) +Pee (UJ,T) —{FM (T) (28)

where the subscripts (ep), (ee), and (M) represent the three processes
in the order mentioned above, and where the quantum correction factors,
bep (w,T) and bee (w,T), may be defined for the first two processes in

such a way that:

= L oep(Mbey (D)

Tep
Pee = Foee(T)bee(w,T)
ey _ (T r Ty )
b(w,T) = <‘eep b (o, + —222 b (1) + M
Ty ep PO ee fo A

Among the three processes, only the electron-phonon process is important
at ordinary temperatures and in the free-electron region of the spectrum,
provided that the metal sample is a reasonably pure one. Many studies
have been made on the contributions of the electron-electron collisions
and the impurity scattering to optical and infrared absorption in metals.
Among the latest developements, the most prominent are the wbrks of
Pitaevskii, Silin, and Gurzhi. According to these authors, the electron=-
electron collisions may contribute significantly either at very low
temperatures or in the high-frequency limit of the infrared spectrum,
while the impurity scatterings are important at very low temperatures
even for a reasonably clean sample. In particular, Gurzhi has derived,

a frequency-dependent electron-electron damping coefficient Fee(w,T),
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as well as a general formula for the impurity contribution to the damp-
ing.

In the present work, a variety of metals, all of which are supposed
to be of very small impurity content, have been investigated as to the
relative importance of the three mechanisms of damping in the high-
frequency region and also at low temperatures. As the result of this
investigation, it is found that, although the suggestion of Pitaevskii,
Silin, and Gurzhi may apply to some special cases of transition metals,
it does not strictly apply to other metals in most of the quantum
mechanical region of the free electron spectrum, In fact, the electron=-
phonon process or the Holstein mechanism alone, in the form that is
derived in the present theory, explains quite successfully (viz., up to
2 ~ 5 percent) the low temperature (4.2°K) near infrared (1 ~ 1.5p)
absorptivity of all the metals for which experimental data are available.

The calculations on transition metals in the present theory suggest
that the electron-electron collisions and impurity scatterings are
particularly important for those transition metals, and similarly for
other multivalent pon~-transition metals, in which the interband tran-
sitions required a non-zero momentum transfer. For a transition metal of
this kind, only the phonons of energy larger than a certain non-zero
value are effective in the transitions, and as the result of this the
electron-phonon, part of the low temperature resistivity has the pre-
viously mentioned negative exponential nature. This applies to all the
transition metals whose S-electrons are not sufficient to close the
d-band, and the low temperature resistivity is due mostly to the electron-
electron collisions with the well known TZ-dependence on temperature as
well as to the temperature-independent impurity sactterings (Restwider-
stand). On the other hand, for those transition metals whose S-electrons
are exactly compensated by the positive holes in the d-band such as the
triad, Pt, Ni, and Pd, the T®-dependence of the electron=-phonon part
plus the T®-dependence of the electron-electron collision term define the
temperature-dependence of the low temperature resistivity to the extent
of neglecting an additional T-dependence in the electron-phonon part.
This is partly in contrast to the earlier concept that the electron-
electron collisions make predominant contributiens at low temperatures
for all transition metals.

Strictly speaking, the T®~-dependence is predominant in the tran-
sition metals other than the traid at temperatures smaller than the

value given by:

AU kg -k . £ 10°K (30)

)
=
[=N
wn

which is also the lower limit in the summation over the phonon states,

where kd' ks are the Fermi momenta for the d- and s-bands, UL is the



62

longitudinal phase speed of sound, and K is the Boltzman constant.

All the optical dispersion quantities, including the optical
conductivity, -(w, T), the optical dielectric constant, ¢(w,T), and
absorptivity, A(w,T), that are calculated in the present theory, show
not only good fit to the corresponding experimental curves throughout
the entire free-electron infrared spectrum, but also reproduce various
dc electrical properties in excellent agreement with the directly measured
values for a number of non-transition and transition metals. They also
reproduce exactly the well known temperature-dependence of the dc

electrical properties (hence, also of heat capacity and thermal conduc=-
.. /BN .
divity),such as the famous Gruneisen formula G T for non-transition

metals. The Gruneisen formula has long been known to describe tempera-
ture-dependence in excellent agreement with observations for T not too
much larger than 9.

It is pointed out, as the result of the present theory, that the
quantum corrections represented by b(w,T)-factor can also be significant
in a relatively long wavelength region of the infrared, when Aw = KT.
This is clearly illustrated in the formula for the reflectivity:

{ _l,
R(w,T) ~ 1 -2 /;ﬂ—j@)— be.D] ° (31)

which applies to the Hagen-Rubens limit of the spectrum or, when «° << I'Z,
where the b-factor, although close to unity in this spectral range, is
usually different from unity by a small fraction, and becomes essentially
equal to unity when #iw << KT in which case the formula is identically

the well-known and time-tested Hagen-Rubens formula. In this sense,
Equation (31) may be called the generalized Hagen-Rubens formula.

The present theory also enables us to estimate such lattice parameters
as the electron density, the effective mass values of optical electrons,
the Fermi energy, the upper edge of the d-band in the transition metal,
and longitudinal phase speed of sound, etc. The heat capacity and thermal
conduction properties also follow as by-products of the present theory.

The impurity content can be estimated from low temperature optical data,
even for a sample with such a small impurity content as to be undetect-
able at ordinary temperatures.

The caluclations for absorptivity at very low temperatures include
both normal and superconducting metals. For the superconducting metals,
or below the superconducting transition temperature, the calculations
are assisted by the theory of superconductivity of Bardeen, Cooper, and
Schrieffer. That Holstein's bulk absorption process might be important
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in a superconductor was suggested resently by Richards and Tinkham.

The calculations in the present work are intended as a check on the said
suggestion and to see whether the existing gap between the experimental
absorptivity and the predictions of Mattis and Bardeen can be explained
by Holstein's mechanism. It may be noted that the absorptivity for light

quanta, Aw, smaller than the energy gap (at T OOK) has been given by
Schrieffer and has been shown to agree well with experiments. At the
present, no definite conclusion can be provided on the basis of the
present calculations because of insufficient experimental data.

Finally, some words need to be said regarding possible limitations
in the present theory. The limitations may result mainly from two causes:
first, the use of the simple Debye model and second, the assumption of
spherical Fermi surfaces.

The first assumption leads to difficulties at very high temperatures
(I >> 8 ), where the Umklapp process is important. The same difficulty
is found in Gruneisen's formula for dc resistivity at very high temper-
atures.

Another less serious aspect of limitations in the use of the Debye
model is in neglecting the anisotropy among the longitudinal and two
transverse directions, whereas in more accurate calculations, one needs
to consider three components of the phase velocity of sound as well as
three characteristic temperatures instead of the Debye temperature alone.
This problem of lattice anisotropy is of no concern for a polycrystalline
metal sample. Perhaps the best justification for using the simple Debye
model is in the good agreement found between the theoretical and experi-
mental values of heat capacity.

It is well known that the Umklapp processes are important at very
low temperatures, especially for those metals in which the interband
transitions are important. At very low temperatures, the Umklapp
processes enter into various physical quantities through electron-
electron collision terms and do not enter into the electron-phonon pro-
cesses, since the angular deflection involved in an electron-phonon
scattering is in the order of <%>, which is certainly much less than
unity. It is known that contribution by electron-electron collisions to
the over-all damping coefficient vanishes when Umklapp processes are not
present. In short, at very low temperatures, the Umklapp processes are
important to the extent that the electron-electron collisions are import-
ant, and hence are automatically taken into consideration in the present
theory by incorporating the effects of electron-electron collisions into
various dispersion formulas.

The limitations that are associated with the assumption of a
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spherical Fermi surface are well known, and are often discussed in the
literature. In general, this approximation works well for most mono-
valent metals, such as the noble metals Ag, Au, and Cu, and also for
some multivalent metals for which the interband transitions are not im-
portant. On the other hand, the assumption of a spherical Fermi surface
is not strictly valid for those non-transition metals in which the Fermi
surface touches or almost touches the plane of energy discontinuity and
for transition metals in which the interband transitions between the s-
and d-bands are most important. In the present theory, the calculations
for non-transition metals are carried out on the basis of a spherical
Fermi surface, while non-spherical Fermi surfaces have been used for all
transition metals. Therefore, it is expected that the results on non-
transition metals will not apply strictly to some multivalent metals.

The present work does not include detailed study of the optical
and electrical properties of alloys, and also of such other properties
of metals as thermoelectricity and magneto-resistive effects. Much has
yet to be learned theoretically about the dc electrical properties be-
fore it is possible to study rigorously the optical and infrared dis-
persion properties of alloys.

An attempt has been made to make this thesis self-contained, but,
in view of all the relevant work yet to be done in the field of interest,
this was impossible. Similarly, an honest effort to give all due credit
was made, but it is likely that some work has not been properly cited,
such omissions were not intentional.

SECTION II. FUNDAMENTAL RELATIONS BETWEEN OPTICAL AND ELECTRICAL
PROPERTIES OF METALS

A. MAXWELL'S EQUATIONS AND KRAMERS-KRONIG RELATIONS

Maxwell's theory of electromagnetism provides us with a set of the
most fundamental relations between the optical properties and the elec-
trical properties of metals. These relations, plus the well-known Kramer's
Kronig relations between the real and imaginary parts of the complex
polarizability, constitute a foundation upon which the interpretation of
the optical and infrared behavior of metals in terms of electrical proper-
ties is based.

If E and H are the electric and magnetic fields represented as
functions of the coordinate r and time t for a given angular frequency:

w= onv sec "t (32)

Maxwell's equations for an uncharged conductor are given in cgs units by
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_ £ QE no(w ' 33
vxE =S & s (33)
_ & oH
voxE= st (34)
v -E =v.H=20 (35)

where ¢(w) is the real dielectric constant, c(w) is the conductivity,
and p is the permeability.

At optical and infrared frequencies, p = 1 for all substances.
The magnetic field H is eliminated by combining Equations (33) and (34)
and we obtain;:

2 E
C2v2E= c ___LZ—__+4NO a__E__ (36)
- ot ot

The solution to this differential equation is given by the typical
solution to the usual wave equation:

1
E = Eoeiwt + i(ew® - i4now)~2z/c (37)

where Eo is the maximum amplitude (i.e., at z = 0, t=0) and z measures

the penetration distance into the metal. Equation (37) takes on the
conventional form expressed in terms of the complex index of refraction

N:

. + o
elw(t + N

R

E-E ) (38)

=0
— i
if we identify N with [...]2w™! of Equation (37):

s
N = (n-ik) =[e - i ﬁff)i]z (39)

where n and k represent the index of refraction and absorption coeffic-
ient, respectively.

The relation in Equation (39) immediately yields the following two
important relations between the electric properties o(w) and optical
constants (n,k):

c =n° - Kk (40)

(41)

Q
I}
o]
=
£
~
V]
Q
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These two relations will be referred to frequently.

The physical significance of o(w) for w> O becomes evident when we
calculate the rate of energy loss by computing the Poynting vector S:

C

S = (E X H) (42)
S o £ A8
and taking the time average of:
e B 3)
d 2

where W is the Joule heat produced per unit time and per unit volume
within the conducting medium. Then, we obtain as the definition of

ow):

- E2
o(w) = W/ — (44)
which says that ¢ is the fraction of the energy absorbed or dissipated
2
per unit volume out of the energy density per unit volume %— , of the

electromagnetic field of frequency w. It is quite obvious then that
g(0), at w = O, should be the dc conductivity of the metal. It is a
popular pratice to introduce a complex dielectric constant, €, and
complex polarizability, &, such that:

< 1 + amo = N2 (45)

@ = o - ia' (46)
This is analogous to the similar relation for the real quantities:
€= 1+ gna =02 - kZ: p=1 47)

Then, upon comparing Equations (45 and 46) with Equation (39),
we now have:

€= 1+ gnaw = n° - kZ (48)

PRI =—5%9— = 2nk (49)

These two relations enable us to obtain (n, k) values upon knowing the
values of the dielectric constant ¢ and conductivity c at a given fre-
quency, and, conversely, to obtain ¢ and ¢ values from known values of
n and k. In general, the observations in the optical and infrared part
of the spectrum are designed to measure the optical constants, (n,k), or
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other optical properties such as the reflectivity and emissivity

( = absorptivity for metals), Therefore, for the purpose of predicting
(n,k) values for a given frequency w and temperature T (°K) from a

known set of values of the dc electric properties, ¢(0) and o(0), or

for the purpose of predicting the dc electric properties from measured
values of (n,k), we need to have a set of theoretical equations relating
e(w) and o(w) to the corresponding dc quantities, €(0) and o(0). Specifi-
cally, the frequency-and temperature-dependence of o(w) needs to be
specified.

Establishing the correct w- and T-dependence of ¢ and ¢ constitutes
a major part of the theoretical work explaining the optical, infrared,
and the related electrical properties of metals. Fortunately, the solu-
tion to the theorectical problem is considerably simplified with the aid
of the Kramers-Kronig relation which represents an integral relation
between o(w) and e(w), or more properly, between the real and imaginary
parts of the complex polarizability as follows:

sa(w) = - % \]p w'm;(w;) dw' (50)
o w'<-w

With the help of Equation (49), this represents a relationship
between e(w) and o(w) given by:

-1 = -» fdw' 200’ 1)
bx T Y (w'=-w®)

Therefore, it is sufficient to specify the w - and T-dependence of either
c or € for establishing the complete w- and T-dependent structure of the
optical and electrical quantities that are involved in Equations (15)

and (16).

In a more general discussion of the Kramers-Kronig relation,
Equation (50) and (51) are equivalently represented in the form:

+00

. NY 'Y -
Re [N(w) - 1] = P f dw I“‘[N%“)) ) (52)

= w' - w

i
-00
which may be recognized as the real part of the equation:
+00

[ﬁ(w) -1 -1 ¢ fdu)' [N - (53)

in w -w

-00
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or in the limit of n—>O+:

+00

Fw -1 =1 f do'  [N(w') - 1 (54)

2ri w' - (w+ 1in)

=00

Equation (53), which is the most general representation of the
Kramers-Kronig relation, was observed by Kramers as a simple consequence
of Cauchy's theorem if we assume that N(w) is a function of a complex
variable w analytic in the upper half w-plane which approaches unity
at infinity. It was later shown by Kronig that the absence of poles of
N(w) in the upper half w-plane was both a necessary and sufficient con-
dition for the property that no signal.may propagate through a medium
with index of refraction N(w) with a speed greater than that of light.

Sometimes, the optical properties of a medium are expressed in terms
of the forward scattering amplitude F(w) and the total scattering cross
section per scattering center Gs(w) rather than in terms of (a,c) or
(n,k).

The equation which shows the relation between the complex_forward
scattering amplitude F(w) and the complex index of refraction N(w) was
first offered by Lorentz, namely:

(e -1 =0, 2% 7 (55)

where n, is the number of scattering centers per unit volume. The same
derivation leading to Equation (55) also yields the optical theorem:

os(w) = 4y¢c Im < Eiw! > (56)
w

where o (w) is the total cross section in cm® per scatterer. The above

relation also follows very simply upon noting that the intensity of a
wave propagating through a medium of refractive index, N(m),nig(agguced

in a distance by a factor Iexpl; % ﬁ(w)z]l2 and also by e
according to the definition of os(w). Comparison of these two expressions
gives Equation (56).

Upon comparing Equations (55) and (56) with the relations 45) ~
(49), some useful relations follow..

We have, for instance:
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n(w) = ReN(w) = 1 + —%— Re F(u) (57)

k(w) = ImN(w) = - ———=—— Im F(w)

o o (w) (58)

Re.NZ = (1l + 4gxq )

n_c n c<
[( 1+ EEE——‘— Re F(w)> (%“ i ——1Im" F(w)) } (59)

e(w)

a(w) - ——Z%———Im-ﬁz = wa

<Im F(w)>< 1 + A c® Re: F(w)> (60)

where the real and imaginary parts of F(w) are related to each other
through Kramers-Kronig relation:

) ImF w’
ReF(w dw o' -0)
m —
2 ImF 1
= ZL:__Pf dw' w,(w,é‘fwé) (61)
o

In applying the relations (57) ~ (60) to the infrared dispersion in
metals, we need only to remember that ng is the effective number of
i)

conduction electrons per cm® and that os(w) is the total scattering

cross section for the conduction electron - external photon interactions
including the absorption, emission, and the scattering in the ordinary
sense.

B. ABSORPTIVITY (EMISSIVITY) AND REFLECTIVITY

Various optical, infrared and electrical properties may be obtained
from measurements of the abserptivity, A, and reflectivity, R, as well
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as from n and k. The two quantities are related by the equation:
R=1-A (62)

The relationship between (R,A) and the electrical properties will
follow naturally from Equations (48) and (49), when we establish the
relationship between (R, A) and (n,k).

The optical theory gives the well-known result that for normal

incidence:
-1 2-1-A (60)
+ 1

==

R = |

which defines the reflectivity and absorptivity in terms of the complex
index of refraction N = n-ik. In particular, for a transparent medium
such as glass, we have N = n, and Equation (63) gives the well-known
formula:

R = < n-1 \? (64)

/
n+tl ~

Equation (63) completely determines R and A in terms of n and k. 1In
order to express R and A in terms of ¢ and ¢, it is convenient to
follow the simple algebraic method of Price (1949) rather than to use
Equations (48) and (49). Upon writing, for the complekx pélarizability,
o

[an@) ™ = (% + iy) (65)
The absorptivity is given by:

1
2

A2 = A2 =T+ (T2 YD) (66)
8R 8(1-A)
where:
T=x +x° + y°
1 - e = 1+k2-n% = x/x® + y2
ame - daks VAR ¢ ®7

w

and these are just as well represented in terms of the real and imaginary
parts of scattering amplitudes according to the relations (57) ~ (60)
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The frequency- and temperature-dependence of R and A will then be
determined when the w- and T-dependent structure of ¢ or ¢ is obtained
theoretically. The spectral and temperature variation of R and A will
vary depending on the choice of the particular theoretical model used
in calculating the complex polarizability. In particular, if we adopt
the classical free electron theory of Drude (1904, 1902), the real and
imaginary parts of the complex polarizability are given by:

x = - (wp )?

y= - (MR)2 (68)
where:
*0 = m*
v zmnoe2 (69)
} -1 ) )
R = I1O = the relaxation time of a conduction
electron
m* = the effective mass of a conduction
electron
e = the electronic charge
= 4.8 x 107, oy
ng = the effective number of conduction

electrons per unit volume

Price (1949) presents an extensive investigation on the qualitative
features of the spectral and temperature variations of variations of
A and R for metals to which one electron dispersion theory can be
applied in the form of Equation (57).

In general, the expressions for x and y will assume different forms
tor diiferent theoretical models. A brief review on some of the most
popular theories on optical and infrared dispersion is presented in the
chapter that follows.

SECTION 111, EXISTING THEORIES ON OPTICAL AND INFRARED DISPERSION
IN METALS
A. HAGEN-RUBENS THEORY

Theoretical discussions on the behavior of metallic conductors under
the influence of electromagnetic waves were first given by Hagen and
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Rubens (1903) and by Drude (1904) on the basis of classical electrody-
namics.

The Hagen-Rubens theory is restricted in its applicability to the
long wavelength part of the spectrum where (w? R)2 is much smaller

than unity, fR being the relaxation time characteristic of the damping

in the electronic motion. The results of the Hagen-Rubens theory follow
from Equations (40), (41), and (42) upon taking:

o(w) £ ¢ (0) = O4c (70)

in the long wavelength part of the spectrum. We thus have:

nk =~ <Gdc/3> (71)

It may be shown that (o k> is much larger than unity for the

de/
wavelengths for which the approximation (Equation 70) is valid, and
hence, approximately:

~

——dec (72)

R=1-A=~1-2 v (73)

where the latter expression is obtained upon substituting Equation (70)
into Equation (53). The formula (73), which is known as the Hagen-Rubens
relation, has been compared with the experiment for infrared radiation
and for various metals and temperatures (Hagen and Rubens, 1903), and

it is in general in fair agreement with the experiment for:

A> 10 p (74)

The approximation represented by Equation (70) is equivalent to
taking the current J in phase with the applied electric field E. This
will be true only if the relaxation time TR of the electron is small

compared with the period of the light wave so that the field acting on
the electron is approximately constant during the time taken by an
electron to traverse its mean free path. For wavelengths shorter than
~ 10 p, the current will be out of phase with the field, and it is
generally observed that the formulas in Equations (72), (73), and (71)
are not even approximately in agreement with the experiment.
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B. DRUDE THEORY

A more general theory than that of Hagen and Rubens was given by
Drude (1904) by obtaining the solutions to the classical equation of
motion for free conduction electrons subject to Maxwell's electromagnetic
field.

In contrast to the Lorentz theory (Lorentz 1906) of absorption by
dielectrics, which rests on the assumption that bound charges become
polarized upon interaction with the electromagnetic wave, Drude (1902,
1904) suggested that consideration of the interaction between the free
conduction electrons in the metal and electromagnetic wave. The solution
for the conductivity, o(w), is obtained upon solving the equation:

—iwt (75)

. C . Iy —iwt
where s is the electron position coordinate within the metal, E = goe w

is the applied electromagnetic field, and Po is the damping coefficient
which is also equal to the inverse of the dc relaxation time ¢R’ Using

the effective mass, m*, in Equation (75) instead of the normal election mass
m which was used in the original Drude theory (1904), we have incorporated
the later developed effective mass method with the primitive free electron
theory of Drude.

Equation (75) yields the expressions for the conductivity o(w) and
the dielectric constant e(w):

_ nkw = U(O) (76)
ow) = 31 1+ (w R)Z
[l-e(w)] -1+ kB-n2= 270 (0) T, (77)
1+ (w R)2

where we used the notations:

a(0) = -—Egrj;/ Po (78)
We see that:

o) 3 <(0) (79)
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so that o(0) is the dc conductivity.

It can be shown readily that the relations in Equations (76) and
(77) reduce to the simple relations in Equations (71), (72), and (73)
of the Hagen-Rubens theory in the limit:

(w TR)E <1 (80)

On the other hand, the results of the Drude theory do not apply to
that part of the short wavelength region where the contributidn of the
bound electrons enter (i.e., the reasonance region) through the photo-
electric effects. At the shorter wavelengths, the anomalous dispersion
occurs due to the contributions of the photo-electric absorption, and
also the core polarization becomes important. In this part of the
spectrum, the simple free electron thory of Drude is not enough to explain
the observed dispersion, and will be modified, for the dielectric constant,
as follows:

2
4ﬂnee
- — 2_ 2_ _ - E=- + -
(¢ -1) = n k® -1 = —z t (e (¢ 1)p (81)
where (¢ - 1)C is the contribution of the core polarization

and (¢ - 1)p of the photoelectric absorption.

In general, the anomalous dispersion is observed at a wavelength
well below ~1lu. Ag, Au, and Cu, for instance, have their lowest reso-
nances at 0.27 w, 0.37 u, and 0.50 p (Meier, 1910), respectively. As long
as one stays at wavelengths which are long enough to be sufficiently
outside the resonance tail, the free electron theory of Drude should be
satisfactory. At the high frequency region where the condition:

(w TR)Z >> 1 (82)
is satisfied, the free electron part of o(w) and e(w) are given by:

o) ~ 0(0) /(wt )? (83)

g-l= - 4nneij//m*w2

The values of (e-1) are available for a variety of metals (Van
Vieck, 1959), and are generally independent of frequency (Mott and
Jones, 1936). The value of (e-1) may be found either by a direct
theoretical calculation, or empirgcally from the observed data of (n + k)
values. The photoelectric part (nk)p of the observed (n,k) values is
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obtained empirically upon subtracting the free electron part (i.e., the
Drude part) from the observed (ntk) values making use of the relation

in Equation (83). Then, (e-1) 1is obtained, in turn, upon making use of
the Kramers-Kronig relation ianquation (51):

—z_ 2

- _ 4
(-1 = % jﬁ(nk) W' d W' (84)
p 1
WS- W
For wavelengths sufficiently outside the photoelectric region,
(»;-1)C and (e-l)p are small enough to be neglected compared with the

free electron part. We shall be primarily interested in this part of
the spectrum where only the free conduction electrons play a dominant
role.

Equations (76) and (77) show that the two Drude equations are related
with each other by a rather simple algebraic relation:

o/l - ¢ = (anfR)=t = T /Jam = nkv/1 + k% - n® (85)

This relation enables us to obtain the value of the dc damping coeffic-

ient, [,» °T the dc relaxation time, 1R’ when we have only one pair of

(n,k) values at an arbitrary frequency provided that the frequency w
is not too large.

A more exact way of determining the value of Ty would be to plot

o(w) against (l-¢) from a set of (ntk) values, and then determine the
slope (I;/4n) of the resulting straight line. This method was first pointed

out by Wolfe (1954, 1955). Any deviation of the curve from the Drude
straight line would also provide us with a measure of the validity of
the Drude theory at a given frequency.

Beattie and Conn (1955) plotted the Argand diagrams showing (2nk/})
against (n®-k?®) for Al, Ag, ni and Cu. The values of FO and +R determined

from the slopes vary greatly depending on the way the metal surfaces are
prepared. The best agreements of the dc conductivity values, 9y which

are obtained upon substituting the r, values into the Drude Equation

(76), with the electrically measured values were obtained for evaporated
metal films. The results of Beattie and Conn are presented in Table VII.
The discrepancy between the measured and calculated (Drude Theory) values
of the dc conductivity for evaporated films of Ag, Cu, Ni and Al are
found as 40 percent, 100 percent, 40 ~ 50 percent and 40 percent respec-
tively. The calculated values are always smaller than the measured values.
These results will be further discussed in a later section, and it will
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be shown that the mentioned discrepancy can be explained theoretically
upon introducing an additional frequency-dependent factor into the
original Drude equation.

For none of the metals that were studied by Beattie and Conn (1955)
did the Argand diagrams yield complete straight lines. For Al, for
instance, the curve starts to deviate from the straight line at ~8u.
The deviation becomes more pronounced toward the shorter wavelengths as
one might have expected. An interesting feature is that the Argand dia-
grams start to deviate from a straight line long before the wavelength
enters the photoelectric resonance tail.

With almost no exception, the dc conductivity, S calculated

according to the Drude Theory from the observed values of optical con-
stants,is always smaller than the measured value even when very care-
fully prepared metal surfaces are used. Thus, it seems that the classi-
cal free electron theory'of Drude contains some basic limitations.

Of all the existing theories on the optical and infrared dispersion
in metals, the cldssical free electron theory of Drude (1904, 1902) has
been most successful in explaining the experimental results aside from
such exceptional cases that will be Hiscussed later.

The Drude Theory has been applied to a large number of metals with
varying degrees of success. An excellent review by Schulz (1957-a) and
the review by Blau, et al, (1958) gives a detailed account of this work
as well as references to many of the original papers. The basis for the
relative success of the Drude Theory lies in the fact that, for a number
of metals for which sufficient data on (ntk) values are available,
Equations (76) and (77) can be fitted to the optically determined curves
of o(w) and ﬂ-e(wﬂ upon adjusting I; and o(0) or n, and m* to suitable

values (Schulz, 1957-a,b,c, 1951, 1954; Beattie and Conn, 1955; Seitz
and Turnbull, 1958;and others)

For Au, Ag and Cu, which have their first resonances at 0.37p,
0.27u, and 0.5y, respectively (Meier, 1910), the Drude Equations (76)
and (77) can be fitted to the experimental curves with m* (Cu) = 1.45m,
and m* (Au) = m* (Ag) = m for A > 2 p (Schulz, 1957-a). The optical
behavior of the three simple monovalent metals is clearly consistent
with the Drude theory at least so far as the frequency dependence is
concerned.

Another example of excellent agreement between theory and experi-
ment is found in the liquid metals Hg and Ga (SchulZz, 1957-b). For
these metals, the theory fits well for A > 0.3 pn.
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II

Metal

c

X 10716 e.s.u.

[e)

X 1071 e.s.u.

(calculated) (measured) fll—
°1
Al 11.6 15.0 1.3
Ni 3.16 4.6 1.5
l 1.02 1.4 1.4

Except for the case of the liquid metals, the success of the Drude
theory mentioned' above is no more than a qualitative one. For the theory
to be quantitatively consistent, the values of the electric properties
such as ¢(0) and €(0), as well as other lattice parameters, must agree
with the measured values when calculated from the measured optical
constants. And conversely, the optical constants calculated from the
measured values of ¢(0) and <(0) should agree with the measured values
of the optical constants. However, in practically all cases that have
been studied, the dc conductivity values calculated from the best-fit
Drude curves are found to be smaller than the handbook values, for mono-
valent as well as multivalent metals. Such discrepancies occur sometimes
by a factor of 2 ~ 10 (see, for instance, Seitz and Turnbull, 1958;
Beattie and Conn, 1955).

As it was shown by Beattie and Conn (1955), the dc conductivity
calculated according to the Drude theory from the measured values of
optical constants depends very strongly on the manner in which the metal
surface is prepared. The discrepancy was smallest, being of the order
of 40 ~ 100 percent, for the case of evaporated metal films, while for
metals prepared in other ways the calculated dc conductivity values were
smaller than the handbook values by a large factor of 3 ~ 5. Although
the large discrepancies in the case where the surfaces are prepared by a
method other than by evaporation may be explained as arising from the
crystal structure of the metal surface being disturbed during the process
of polishing such as introducing an amorphous layer, the discrepancy
for the case of evaporated films is yet to be explained. The only cases
where both qualitative and quantitative agreements are found are the
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liquid metals Hg and Ga.

In general, the agreement between the theory and experiment for
solid, multivalent metals is more incomplete than for monovalent metals
such as gold, silver and copper. At best, a partial agreement over a
narrow spectral region can be obtained through suitable adjustment of
the parameters ng,, m¥, and o(0). This procedure for multivalent metal
is justified, as will be explained, when the contribution to o(w) and
e(w) of the one band is predominant over the second band contribution
in a certain range of the spectrum in the two-band description of the
free electron theory. 1In this range of the spectrum, the metal may be
treated effectively with the one-electron formula of Drude. By adjust-
ing ne and ¢(0), Hodgson (1955) was able to fit measured values of n and k
for the divalent metal Zn from 2 to 15 p. The value of n_, was substan-
tially lower than that calculated, and the value of 5(0) substantially
lower than that measured. For the trivalent metal Al, Hodgson (1955)
and Beattie (1955) could fit the Drude curves to the optical curves in
the spectral range of 1 ~ 10 p, using suitably reduced values of ng
and o(0).

In spite of the good agreement found in the liquid metals Hg and Ga,
it was found (Schulz, 1957-c) that the Jiquid alloys Hg-In. Hg-Tl, and
Ga-In are in complete disagreement with the theory. This is in gontrast
to the earlier srudies of Kent (1919) whicn pointed out that some liquid
alloys follow the Drude theory. But these studies were confined to a
very short wavelength range. Some of the early studies on the optical
properties of liquid metals (Kent, 1919), bismuth, lead, cadmium and tin,
in the spectral range of 0.40u to 0.379u shows a remarkable agreement
with the Drude theory as shown in Table VII.

C. ELECTRON-LATTICE INTERACTION AND ANOMALOUS SKIN EFFECTS

In the original theory of Drude (1904), the viscous damping co-
efficient, I'y, was used without specified reference to the physical
mechanism giving rise to the damping. The introduction of 'y was
necessary in order to maintain a consistency between the electromagnetic
dispersion and the finite dc resistivity on the basis of the free electron
model. 1In this sense, the damping coefficient was used as a parameter
whose magnitude was to be determined either from the measured electrical
properties or from the measured optical data. Kronig (1927) reconsidered
the problem in the frame of the modern theory of metals, showing that
if the conduction electrons are treated as moving in a periodic potential
perturbed by the thermal agitation of the lattice, they can be held re-
sponsible for the optical properties in the infrared as well as for the
characteristic absorption and refraction in the visible and near ultra-
violet parts of the spectrum. In other words, Kronig attributed the
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TABLE VII. LOW TEMPERATURE ABSORPTIVITY OF METALS
Total Absorptivity A Bulk Optical Data Used to
Metals Present Experiment Absorptivity Caleulate
Theory (AB !/ A % AB’ AS
Cu 0.0048 0.0050 407% Beattie Conn (1955)
Biondi(1956) Bor et al (1939)
Forsterling +
Freederickz (1913)
Al 0.008 497 Golovashkin et al (1960)
Motulevich et al (1960)
Ag 0.0046 0.0044 20% Schulz (1951, 1954)
Biondi (1956) Hodgson (1955)
Forsterling + Freedericksz
(1913)
Hg 0.030 87% Schulz (1957)
Ga 0.037 87% Schulz (1957)
Zn = = Hodgson (1955)
0.003 0.003
Sn = AB— Hodgson (1955)
0.008 0.008
Ni 0.015 86% Beattie Conn (1955)
Ti AB= ~ AB= Hass Bradford (1957)
0.054 0.054
Pt 0.054 947 Forsterling Freederick
(1913)
Ir 0. 093 95% Forsterling Freederick

(1913)

T These are the extrapolations from the liquid data, and are not
strictly valid for solids, except, perhaps, in the order of magnitude,

% The skin absorptivity AS not computed,
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occurrence of finite I to the mechanism of the electron-lattice inter-
action.

The mechanism of the electron-Lattice interaction or the electron-
phonon interaction as it is popularly interpreted in modern theory, and
of impurity scattering when the metal contains a substantial amount of
impurities, has shown enormous success in explaining various physical
qualities of metals such as the thermal and electric conduction, the
Wiedemann-Franz law, the Matthiessen rule, the dependence of the electric
resistance on temperature and pressure, and many others. (See, for in-
stance, Wilson, 1936; Mott and Jones, 1936)

The impurity scattering introduces a residual resistance (Restwider-
stand) and represents the temperature-independent, additive quantity of
resistivity in the Matthiessen rule. A further progress on the behavior
of metallic conductors under the influence of electromagnetic waves was
made by Reuter and Sondheimer (1948) and was later elaborated by Dingle
(1953), Gordon and Sondheimer (1953) and Pitaevski (1958). This work
concerns the phenomenon that is popularly referred to as the anomalous
skin effect and is important only at low temperatures.

Reuter and Sondheimer (1948), following a suggestion of London (1940),
investigated the case, important at low temperatures, that the mean free
path of the conduction electrons for collisions with the lattice is af
the same order of magnitude as, or even large, compared with the normal
penetration depth (skin depth) of the electromagnetic waves in the metal.
In this case, the way in which the metal boundary influences the motion
of the electrons arriving there becomes important. The authors distin-
guished two extreme cases: namely, that of the specular reflection at the
surface and that of completely diffuse reflection, the latter being act
least approximately realized in nature according to the available evidence.
Dingle (1952, 1953) added elaboration to the original theory of Reuter
and Sondheimer, and showed, in particular, that, especially in the case
of diffuse reflection, the values resulting for the absorptivity A(=1-R)
of the metallic surface may differ widely from the predictions of standard
theory. Qualitatively, this is to say that, in this case, the loss of
momentum parallel to the boundary, which an electron suffers when diffusly
reflected by it, furnishes a contribution to the real part of the surface
impedance of the metal. This contribution remains even if, by lowering
the temperature, the bulk resistivity and with it the energy loss in the
interior of the metal are reduced. Hence, the metal still retains a
non-zero absorptivity when the bulk resistivity is made to vanish by
lowering the temperature to 0°K. This conclusion was qualitatively pre-
dicted by the experiments of Ramanathan (1952) at the liquid helium
temperature. The success of the theory of anomalous skin effect in
accounting for the reflectivity of metals has been conclusively demon-
strated by Dingle (1953) and Pitaevski (1958).
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In its present state of development, the theory of the anomalous
skin effect applies strictly to the alkali metals and monovalent metals
such as Au, Ag, and Cu. Like the simple Drude theory, the anomalous
skin effect does not apply in a region of strong resonance absorption.
Table VII shows the values of the absorptivity, A:

A=A +A (86)

for Cu and Ag, where As is the diffuse skin absorptivity:

3 /v
AS = <;§_> (87)

Vf being the Fermi velocity of electron and c the speed of light, and

A is the bulk contribution to the absorption resulting primarily from

the electron-phonon interactions. The values of A for Cu and Ag have

been obtained from the formula that will be derived in the calculations
of Section IV. It is seen in Table VIII that the bulk and skin effects
added together show agreements with the experimental values up to about
2 percent.

Associated with the skin effect is the skin depth which is the
thickness at the metal surface in which most of the optical skin effect
is observed, and is given by:

5 =< w2 ) E (88)

n e< s
4T

and is in the order of several thousand angstroms. This is not to be con-
fused with the so-called penetration depth & which is a distance charac~-
teristic of the surface penetration by light‘of given wavelength and is
the distance at which the intensity falls to 1 of that at the surface.

e

It is given by:

5. = A (89)
471k

where k is the absorption index. For sodium at A = 0.6p, k@ 2.6, and
SI is approximately 180 A. 1In gerneral, 81 is in the order of several
hundred angstroms. The expression of Equation (89) is reminiscent of

the similar expression for the penetration diepth at radio frequencies:

5 = C = M A (90)

B e A S

4ncdc W 2 szﬂk
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where % is the dc electric conductivity. The two expressions are

c
essentially the same as far as the qualitative estimations are concerned.

TABLE VI. LIQUID METALS

Metal Bi Pb cd Sn Hg

Ne /atom
(calculated)

1/a
o

(pn ohm/cm) 128 94 33.4 54 87.3
calculated

l/Udc

(p ohm/cm) 134 98 34 52 94
measured
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TABLE VIII LOW TEMPERATURE ABSORPTIVITY OF METALS
fotal Absorptivity A . Bulk Optical Data Used to
Metals| Present Experiment {Absorptivity Calculate
Theory :(AB/A) yA AB, AS
Cu 0.0048 0.0050 40% Beattie Conn (1955)
Biondi (1956) Bor et al (1939)
Forsterling & Freederickz
(1913)
Al 0.008 -—- 497, Golovashkin et al (1960)
Motulevich et al (1960)
Ag 0.0046 0.0044 Schulz (1951, 1954)
Biondi (1956) 20% Hodgson (1955)
Forsterling & Frcederickz
(1913)
He | 0.030" - 87% Schulz (1957)
Ga | 0.037" --- 87% Schulz (1957)
7n AB: i _——— AB: Hodgson (1955)
0.003 --- 0.003
Sn AB: ¢ --- = Hodgson (1955)
0.008 --- 0.008
Ni 0.015 -—- 86% Beattie Conn (1955)
Ti A= g S A= Hass Bradford (1957)
0.054 0.054
Pt 0.054 -——- 947, Forsterling Freederick
(1913)
Ir 0.093 --- 95% Fosterling Freederick
(1913)

+ These are the extrapolations from the liquid data, and are not strictly
valid for solids, except, perhaps, in the order of magnitude.

* The skin absorptivity Ag not computed.
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SECTION IV. QUANTUM MECHANICAL CALCULATION OF OPTICAL AND INFRARED
DISPERSION IN METALS

A. INTRODUCTION

All of the existing theories are based on the common assumption
that Maxwell's theory of electromagnetism is valid in the form that
was discussed in Section II, and any new theory which is based on the
same assumption should necessarily be formulated on the basic grounds
laid by the work that has been done in the past.

The classical dispersion equations are simply the solutions to
the equations of motion subject to Maxwell's electromagnetic field.
Therefore, as long as we confine ourselves to that part of the spectrum
where the free electrons are mostly responsible for the dispersion, it
is quite natural for us to expect that a new theory which is offered by
quantum mechanical calculations should necessarily be a ''quantum
mechanical free electron theory'" which can differ from the classical
free electron theory only in specification of the temperature depend-
ence and also of further frequency dependence if any, in the viscous
damping and polarizability, etc.

Various quantum mechanical dispersion equations should approach
the corresponding classical equations in the limit of low frequency
where o(w) approaches the value of o(0) of the static case. It is
hardly necessary to mention that some of the high-frequency effects,
such as the phenomenon of anomalous dispersion arising from the photo-
electric resonance of bound electrons and also of the small but important
contribution of the core polarization, can be explained rigorously only
with the aid of quantum mechanics.

Compared with an enormous amount of qualitative and quantitative
applications of quantum mechanics to the properties of metals under
the influence of static electric fields, very little progress is found
on the optical and infrared dispersive properties of metals beyond what
is available from the classical free electron theories and the anomalous
skin effects. The less said the better on similar considerations of
alloys. However, it is self evident that the noble features of quantum
mechanics revealed in the metallic properties under the influence of
static electric field provide an indispensable tool for examining the
optical and infrared dispersion properties of metals, because as we saw
in Section III, the two aspects of metallic properties are intimately
linked with each other. This was already qualitatively made use of in
the early studies of Mott (1934) and Mott and Jones (1936) . Further,
much progress that has been made on the optical properties of semicon-
ductors can be extended to metallic conductors with suitable modifications
since, after all, the semiconductors and metallic conductors may be
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considered as differing from each other more in degree than in kind as
far as the respective conduction mechanism and properties are concerned.
The qualitative aspects of this feature were already discussed in the
early studies of Wilson (1936) and more recently in the work of Bardeen
and Shockley (1950).

Some of the considerations that enter in the quantum mechanical
calculations may be mentioned as:

(a) the Pauli exclusion principle;
(b) the Fermi-Dirac statistics;
(¢) solid band structures;

(d) quantum mechanical interpretations of various interactions
that contribute to the viscous damping of conduction
electrons;

(e) the effect of core polarization;
(£f) the effect of the bound electrons.

The calculations in the frame of the free electron theory involves con-
sidering explicitly all of the above except for the last two, in
addition to the fundamental relations available from Maxwell's theory
of electromagnetism considered in Section II. A qualitative discussion
on the effects related with (e) and (f) above was given in Section III,
and excellent discussions of these features, as to the mechanism and
effects, are presented by Van Vleck (1959) and Mott and Jones (1936)

on (e) and (f) above, respectively. A detailed discussion on these
points is outside the scope of the present work.

In the theoretical calculations that will follow, it is attempted
to find explicitly the w- and T- dependent structure of the damping
coefficient and, hence the polarizability & and also the bulk absorp-
tivity Av (w,T), in the framework of the free electron theory and with

the assumption of spherical Fermi surface. That very little error is
involved in assuming a spherical energy surface for most of the body-
cnetered, face-centered and hexagonal cubic lattices was pointed out

by Wilson (1936) and Mott and Jones (1936), and is shown in the follow-
ing qualitative expression for dc conductivity (Jones, 1956):

JES n e” ff/< JF(E) T(_l_(_)( 32E \;(dal_c) (91)
de = " T ipen2 SE akiakj /

(i: j = 1:2:3)
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where F(E) is the dimensionless electron distribution function at energy
E(K) and T(k) is the dc relaxation lifetime of an electron with momentum
(hk) . Futhermore, even for a metal which, in a single crystal, has a
detectable degree of anisotropy. the spherical approximation of Fermi
surface works well for a polycrystalline sample. Some particular cases
of metals in which interband transitions make predominant contributions
to various electrical and optical properties and for which nonspherical
Fermi surface must be used, will be treated in the future section on
transition metals.

The results on transition metals should apply equally well to other
nontransition, multivalent metals when interband transitions need to be
considered.

For metals to which spherical Fermi surface applies, effect of the
periodic lattice is incorporated entirely into the effective number of
electrons per unit volume and the effective mass. This is in accord
with the "effective mass method" which will be discussed in more detail
in the following paragraph of this section. Then, for a metal which is
free of impurities, the only perturbation to the electronic motion origi-
nating from the presence of lattice is the electron-phonon interaction or
the interaction between the '"free" electrons and the thermal vibrations
of the lattice represented by a finite temperature-dependent distortion
of the lattice from the perfectly periodic potential of 0°K. Such a
perturbation decreases rapidly as temperature is lowered to the absolute
zero. The metals with a substantial impurity content and alloys, espe-
cially the ones with a random lattice, are exceptions to this picture:
there is a finite, temperature-independent perturbation giving rise to
a non-zero resistivity at 0°K, the total resistivity being given by this
plus an additional temperature-dependent term (Mathiessen's rule),
(Mathiessen and Vogt, 1864).

The bulk absorptivity, A , the conductivity, o(w), as well as the
damping coefficient are calculated from the result on the rate of energy
expenditure W(w,T), which is related to o(w), according to the free elec-
tron theory by:

n W= E2 o(w) (92)
¢ 2

where o(w) is in turn related to the damping coefficient through the
typical free electron dispersion equations, and where (EZ/2) is the energy
density per unit volume of the electromagnetic radiation field.

— Identification of the damping coefficient in the final expression
of W is straightforward when we compare the result with the corresponding
dc expression derived in Wilson's theory of metals (1936). Thus, the
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approach adopted in the present work differs from the usual method of
finding the damping coefficient directly by calculating the inverse of
transition lifetimes (relaxation time) from the transition matrix
elements.

TABLE VIII METALS WITH LARGE ANISOTROPY

Metals Anisotropy in dc resistivity

Max. Min. Ratio Reference
Ga (Solid) 55.(5) 7.8 (5) 7 Powell (1949)
Hg (Solid) 23.5 17.8 1.32 Sckell (1930)
Sb 42.6 35.6 1.2 Bridgman (1925)
Cd 8.3 6.8 1.22 "
Te 1.54x10° | 5.6x10%| 2.75 "
Zn 6.05 5.83 1.04 "
Bi 138 109 1.27 "

Powell, Nature 164, 153 (1949)
Sckell, Ann. Physik (5) 6, 932 (1930)

Bridgman, Proc. Amer. Acdd. 60, 306 (1925)
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B. CALCULATIONAL METHOD AND ASSUMPTIONS ON DAMPING INTERACTIONS

It will be assumed that the predominant contribution to the electron
damping comes from the electron-lattice interaction in cooperation with
the perturbing electromagnetic field. The contribution by electron-
electron collisions, which are important at very high frequencies and at
very low temperatures, will be combined with the results of the present
section using the formulas obtained by Gurzhy (1958). Further, when
metal contains a substantial amount of impurities, the effective damping
will be the sum of the contributions by electron-phonon processes, electron-
electron collisions and impurity scattering. The additional contribution
by impurity scattering is responsible for the temperature-independent
residual resistance in the Mathiessen rule. In the present section,
calculations will be carried out for a pure metal. However, if the im-
purity effects need to be considered, a constant term is to be added to
the damping coefficient. This additive constant may be calculated from
either an optical data (Golovashkin, et al, 1960) or from low temperature
measurements of dc resistivity.

In this chapter, only those transitions which take place within a
single band in the lowest Brillouin zone will be considered: i.e., intra-
band transitions. The case where the interband transitions are involved
will be left to a future chapter on transition metals.

Once we adopt the Hamiltonian in a specific form, various transition
probabilities can be found by the usual quantum mechanical methods. We
shall use the perturbation method similar to that was used by Wilson (1936)
and Holstein (1954). Then, the transitions which are responsible for the
damping and dispersion are the second order processes in which an electron
initially at the momentum state k, makes a transition to the final state
52 upon a simultaneous absorptions or emissions of a phonon and a photon.

We define:

+
as the probability per unit time for a conduction electron to make a
transition from the state k, to the final state k, with simultaneous
photon and phonon emissions (+) and absorptions (-) when it is certain
that the 52 state is completely empty and El state is completely filled
and where the superscript (%) designates the phonon processes and the
subscript (%) the photon processes.

According to the Fermi-Dirac statistics, the probability that the
k with the corresponding energy E (k) is filled at temperature T(°K) is
given by the Fermi function:
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£ (E) - 1 (93)
1+ eP(E-Eg)

where E. is the Fermi energy and B is (KT)~*, K being the Boltzmann
constang. Then, the total probability per unit time of an electron
initially at the state k, to make a transition to any of the other empty
states by either one of the four processes designated by the superscript
and subscript () will be given by:

P(S) <1_<l>= 2? {_.1 - £ (£)] P (S) kl—+k2> (94)
k
2o

where the factor 2 comes about because, according to the Pauli exclusion
principle, two electrons with opposite spins can occupy the state with
same k and E(k). The appearance of [1—f(E23 embodies the Pauli exclusion
principle.

In order to represent the gross manifestations of such microscopic
transition processes, we have to average the probability of Equation (94)
over all the initially occupied states according to the Fermi-Dirac
statistics. The resulting average value of probability (P) per unit time
will be in the form:

(r)- \ () 3
<Prgy> = EEZL Ez £(E,) [1-£(E,) oy Ei"kz//4ijilf (El)> (95)
ki ko ki

where r, s = ().

Then, following Holstein (1954), the power expended by the electro-
magnetic radiation field is defined as:

= (r)y (O]
W _Z Ao [ RN (96)
r=(i)

This implies simply that the net power expenditure is the total power
absorbed minus the amount which is emitted into the radiation field.
There is an analogy between Equation (96) and the corresponding statis-
tical mechanical formula of Wilson (1936).

The relation in Equation (96) is dependent on both the frequency
w and temperature T. A part of the temperature dependence comes from
the Fermi-Dirac statistics of the electron distribution and the other
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part comes from the Bose-Einstein statistics of the phonon distribution
(the thermal vibration of lattice) which enter in the Hamiltonian average
over the distribution of phonon states.

Once the T- and w-dependent expression for W is obtained various
dispersion formulas follow naturally. For instance, the high frequency
conductivity o(w) is given by:

0 W - EZ a(w) 97)
e 2

Thus, it is evident that the main task of theoretical calculations is in
finding correct values of Wor P .

In general, the expression for W will vary depending on the partic-
ular physical model of the system, the methods of computation, and the
particular Hamiltonian that are adopted. According to the effective mass
method of Peckar (1946), Slater (1949), Wannier (1937), and James (1949),
and to the theorems developed by Bardeen and Shockley (1950), the electrons
in the isotropic (cubic) lattice may be considered as free electrons of
effective mass m*, and when the lattice is distorted by a small amount
resulting in a small change in the potential:

Vp =80 = Ud(§) - UO(E) (98)

the amplitude part of the electronic wavefunction A(x) satisfies the
Schrddinger equation:

5 |
2m* _

[ A% vEsoeu W A(x) = EA(x) (99)

where Uo(g) is the original undistorted periodic potential and U,(x) is
the distorted potential which depends on the strains eij that are imparted

to the lattice in distortion. 1If the lattice is not cubic, we must re-

) 1 5 \
place Q s U hy:

/1_ 3%+ 1 2 4 a2 > (100)
(m’f 3%y _“%‘_3322_ m¥ 3%3

where (xl, mg, mg) are the three principal-axis coordinates, and

(mf, mg, mg) are the three values of effective mass. The amplitude func-
tion,A(x), is a smoothly varying function which does not vary appreciably
over the unit cell: If A(x) does not meet this condition, the method of
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effective mass is inadequate without a considerable degree of refinement.
In general, wave functions of electrons in metals are rather flat except
in the middle of the atom (Mott and Jones, 1936), and the volume within
which the wave function is not flat is relatively small, so that the

o -
is the atomic volume. This flatness of wave function is the reason why
the approximation of neglecting the periodic field (free electron approxi-
mation) gives good results for metals, and thus Equation (100), should
work. According to Bardeen and Shockley (1950), the electron-lattice

potential Vp (x) may be taken in the form:

charge density in the flat region is almost exactly Q‘ e \, where VO

Vp (x) =g~ (R (101)

where g is a constant and ~, (x) is the dilation. Neglecting the other
terms in the expansion of Vp (x) in powers of the strain Eij is equivalent

to neglecting the dependence of the effective mass on the strain. It was
shown that the next largest term in Vp (x) to that given in Equation (101)

is proportional to the square of momentum times the strain:
~ 0 (k® X strain) (102)

and, for the usual order of magnitude of k“ involved in metals and for the
size of the strain in the thermal agitation of the lattice, this second
term can safely be neglected.

C. TRANSITION PROBABILITY CALCULATION

Following Bardeen and Shockley (1950) and Holstein (1954), the
Schrodinger equation for a conduction electron interacting with the per-
turbing electromagnetic field, A, and the lattice vibration may be written
in the form:

g 2
S (_mm e 4 YUy, v (103)

- 2m* C /

where Vp (x) is interpreted as the electron-phonon interaction potential

given by:

[

(r) :“L | ’éq,j aj(_q)ei [—‘1‘5 g, jt} Fc.c. (104)
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= 2 )
(@) (/I‘LN_cl ; poVw_q,J.)

apr @ =/ @ g gl 2o

T

where (aj* (9), aj (q) are the phonon creation and annihilation operators,
Pq is the mass density, wﬂ 3 is the phonon frequency:
b

bow .= E 105
“4,i T Tq,i (103)

and (éq J,) are the orthonormal basic vectors:
3

L 1% B PR ij (106)

and g is a constant whose value is of the same order as the electronic
energy.

For an isotropic lattice, we have the simpler expression:

v @ = lgz < : [\/N@ oiax - B E/R) (107)
2N MVE

-i(q.x - E t/H 1
-/N(g) + 1l e (g-x q )J
where we have used the following notations:
M : Mass of the lattice
V : The sample volume

Np : Phonon number density (per unit volume) = po
M

gq : Phonon wave-vector (momentum/h)
E : Energy of a phonon at the state (g)

N(gq) : The number of phonon states for Eg that are occupied,

and is according to Bose-Einstein statistics,
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1
N(Q = —Fmr
eBEH 1

In practice, it is often possible to distinguish longitudinal and
transverse waves in a crystal and discard the latter because of the factor
C@j-ﬂ) in Equation (104). This is what has been done in obtaining Equation

(107). This is also related to the approximation of taking Eﬂ dependent

only on the magnitude q and using the simple Debye dispersion of phonons
when the accoustic branch of phonon spectrum makes predominant contri-
butions. When KT has a value comparable to the discrete quantum of upper
branches, the optical branch contributes significantly.

In the present work, the electromagnetic field will be treated purely
classically and we will use:

A(x) = <é(§)e‘iwt + A% (z)eﬂlwt\

IV

' A\
= -i ek <‘i(g.x—wt) -i(p.x-~wt) (108)
e = - e = .
oW ,,
where E is the electric amplitude vector which satisfies (E.p)=0 when we
chose A to meet the divergence condition (V.A)=0. The Schrddiger Equation
(103) now becomes, upon neglecting the term quadratic in A:

Y = - A2 - _eh - N
iA %\éf Yo T2y + (m—é NS Vp W (109)

In the absence of the perturbation by the electromagnetic field and the
lattice vibration, the stationary states of electrons are represented by
the wave functions:

b (0 - RICH 3 Ekt/zﬁ) (110)

where:

E, = (K2KZ /2m%) (111)

The perturbed wave function ¥ (x,t) may be expanded into a super-
position of the unperturbed, free electron states in the form:

¥(x,t) = B(k) Vi (x,0) (112)

[~
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where B(k) is the expansion coefficient with an explicit time dependence.
By substituting Equation (112) into (109), the equation of motion for
B(k) is obtained as:

. OB(K) _ ef (kE) o i(E - E_ -Rw)t/H
i 2B - oh (kR) [B(kz)e k "kp

2im*yw

i(E. - E + +.ﬁw)tﬁh] (113)

- B(ktp)e "k kp

+ igz q( _ﬁ__\% [B(E'_‘l) /@ ot B Bieg B LA
q

2N MVE  /
P 4

-B(k+ﬂ)Wei(Ek’ El_<+_q+ EH) t/,ﬁ]

In the absence of the lattice vibration we would have only the first term
[---] in Equation (113) arising solely from the electromagnetic field. 1In
this case, the coefficient B(k) cannot be made to increase indefinitely
with time because the energy terms:

B " Bpip L (114)

ir. the exponents cannot be made to vanish. In the language of perturbatiom
theory, the transitions are at most virtual and this corresponds to the
fact that a photon cannot be absorbed or emitted by a free electron.
Therefore, the electromagnetic perturbation alone cannot explain the damp-
ing in optical dispersion (Heitler, 1957). Following the usual procedure
of the perturbation method, we write

B() = 6 (kk)) +B gy () +B )0 () + .. (115)

where B are the first order, second order, ... terms for

(1)’ B (2)" "

an electron which was certain to be at the state 50 initially. The

electromagnetic and the lattice vibration terms will be considered as the
first order perturbations in Equation (109). Then B(l) in Equation (1153)

will contain only those terms which are in the first power of E and g as
well as those quadratic in each of E and g. The combined action of the
electromagnetic field and the lattice vibration is described by that term
of B (2) which is bilinear in E and g, and we will need only this part of

B for our dispersion calculations.

(2)
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In order to calculate B(2)’ we need to obtain B(l) first. By
substituting Equation (115) into (113) and collecting the terms which
are of the first order in E and g, and integrating in time from 0 to t,

we obtain the following:

l(E - Ek -»ﬁm)t//ﬁ_l \
By @) = LGB ol kep) (S
(1) - 2m*w k Ek - hw /
K K-P
~ b(ko, ki) ( E, .~ Ek P_+ $w) t/)ﬁ_1 >
Ek E_IS+E+ hw

- a
- 1g>: < [5(1( »k-9) VN(9) ( _g- ES. J
2N MVE / Ey q

+g+ Eg) t/,ﬁ_l \'\

e P
- 8(k_,k+q) ,/N(g)+1’< SR )

ktq g

L

Using Equation (116) in (113), and collecting only those terms which
are bilinear in E and g, we obtain:
1

2
2 2 1/ N(g)
B (ktqep) = (2oL )3 (efz ) 1
(2) = 2N MVE 2mky N(q)+1 2
p & / e S.
. K k*tg s k SLEEA (117)
—_ - /
k+_q E1_< + Eﬂ Ekip_- El_{: hw. t
k9 o LB k JE A ]
- g' E, . -E +MA 0 J
(E}Stg Bt By (Byap™ By w) £
where k is now written in place of k , and:
£ = Ekiﬂ— EE + Aw + E_q
t' = E - B, t A (118)
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€ = Eyigep” Prap® Bq

The probability per unit time, P(k k*q*p), for the electron to make a
transition from k to (k+qtp) under the combined action of the electro-
magnetic and acoustical fields is given by the absolute square of B(Z)

divided by time,

P(k ktg*p) = B2y (ktg*p) t (119)

t—sx

A significant contribution to Equation (119) comes from those situ-
ations where one of the energy denominators contained in Equation (117)
becomes zero. Only in such cases does the transition probability per
unit time approach a constant nonvanishing value for a large t. The zeros
of the energy denominators may be grouped into two categories: those which
involve a coincidence of initial and final energies inclusive of the
photon energy #w and phonon energy EH, and those which arise from an

energy coincidence of an intermediate state with either the initial or
final state. The two terms of Equation (117) which contain &' and g"
will not contribute to the over-all transition probability, since they
cancel out in calculations of the energy expenditure. It is easily shown
that:

lg'| ~ \1‘1t F Ao ~ Hw (120)

On the other hand, the zero, §'"=0, is physically possible and the reso-
nance factor containing ' gives rise to B(£") in the expression for the
transition probability. However, the terms with ¢' and t" contribute
equally to both absorption and emission processes of photons, and the
over-all contribution from these terms to the net absorption, which is
obtained from:

(%) ()
Py " Bh \ (121)

cancel out. Therefore, we only need to evaluate the transition probab-
ility at the singularity §&=0.

Equation (117) may then be replaced by equation:
A2 >%< Vv N(9)

B,,, (ktg*p) = q (-———- > _efig
(2) ZNPMVE.Sl J N(g)+1 2y (122)
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o < k+tgqg N k \ ei(Elsi_qu EsE +'ﬁw)t/lﬁ
=" \(E , -E +E -E. T
ktq 'k g Ek_ tp E1_<+ Aw E}s tq iB— E_+ hw + E_(1

Let us consider the transitions k —» (k+q+p) first

We notice that:

<Ez+_q TP T E.<1> i < Erp ™ P T h“’) -
(123)

<E5+P. i Eljj ) ( Eirgrp ” Pk- > T

E \ represent

Nz
(o]

the (v/C) correctioms,

The quantities of the form < kfR_
Furthermore, g may be taken equal to zero in

and will be ignored.
Equation (123); a deviation from zero need be considered only in the last

factor of Equation (122) representing the resonance factor
Equation (122) is then replaced by:

- __________\z /N

JAEEA_ (124)
£

La
X

X
hw + Ek- EE+B

for the tramsition, k  kt+g+p.
The transition probability P (k —» k+gq+p) may be evaluated readily

from Equation (125) upon taking:

(Ek+ "B T hw,,\/ = - (125)
and following the popular practice (Heitler, 1957):
t 2
5 (&) _t"m 2? i -ziﬂ [ STEET/T g
_ Lim A 1 igt/h 1 2 (126)
t—+x on t ¢
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We thus have:

P (k—+k+q+p) = =g®N (g)e243q2 (E-9)%  g(g) (127)
4NpMVE—qm*2w2 Hw) 2

Upon introducing the final state momentum, ko, as (k+g+p) and de-
noting the initial state k as k;, and noting also that the argument, &,
of the delta function, 8&(t), represents the absorption of a phonon and
and a photon of energy fw and E_respectively, we may rewrite (127) into
the form: 4

- 2 2.2
P(E)) (k1—~k2) = g N(q)e g (E - q)2 8(Ez- E1- E4- Hw) (128)
4NpMVEqm*2w4

where the superscript (-) refers to the phonon absorption and the sub-
script (-) to the photon absorption.

From now on, the photon momentum, p, will be neglected for the
reason stated previously, and represent the final momentum, ks, as:

ko=ky g (129)

Then, Equation (128) may readily be generalized to include the
emissions (+) of phonons and photons as well, and we have the general
formula:

(9 e2(E-q)° +
Proy a—k) = ——==0 ¢ () B(Ea- By ¢ Fot £iw) (130)
where
(+) N(q) +l
¢ (g - :thgzgz < N(g) (131)

which are proportional to the probabilities of absorption (-) and emission
(+) of phonons without scattering (Wilson, 1936; Born and Huang, 1956).

()

(94) and (95). Substitutlon of Equation (130) into (94) gives us:

Next we evaluate (P )y (r, s—*) from the relations in Equations

p (¥ _\ e(E-9)? (r)
Plo) (k1) —Z arE G Q) [1-f(E2)] 8(Es- Ei+ rE3+ shw) (132)

ko
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The summation over the final momentum states ks may be replaced by
corresponding momentum integral,

% — ff (dkz)
k (271):3 :
ko

dkp = ko® dkad Q5

dE
= W dSk2: dSk2 = k%5d Q5 (133)

In virtue of the relation, gq=*(ks-k;), the summation over ks is equiva-
lent to summation over the phonon momentum g and also to replacing the
summation by the corresponding integral in momentum space:

L,V ff (dg) ... (134)
2; (e)® “/

At the same time, it is expedient to average over the direction of
electric field with respect to g.

One thus obtains:

() o T ¢®
Py - et [Tt [ e @Desea) a3

)
487 5 -1

X & <»ﬁ2q2 + £ kiqu + rE + shw)
T o q

where we have taken (E - 3)2 = % q°E® and p=cos 6, 6 being the angle
between the momenta, k; and g, and Eo= Ex(k; * q).

The integral over q extends from o to the maximum value 9, where
d, is determined from the Debye temperature © and the longitudinal phase
velocity of sound U by the relation:

hquo = K® (136)

where K is the Boltzmann constant. It is also determined equivalently
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from the phonon number density Np per unit volume:

N = &g 1 q° = qs//6n2 (137)
P 3 2 o2 ° °

Here we have assumed the simple Debye dispersion of phonons. This
approximation is known to be satisfactory at ordinary temperatures, such
as in heat capacity calculations. The shortcomings of the Debye model
of lattice appear mostly at very high temperatures where the average
momentum transfer in electronic processes in considerably larger than
the Debye cut-off value, and also at very low temperatures. More complete
formulation of phonon dispersion is available; see, for instance, Leighton
(1948) on monovalent metals and Bardeen (1937) for a more rigorous form
of electron-phonon interaction involving the Umklapp processes important
at very high temperatures. The work of Leighton (1948) shows that a more
general treatment than Debye's model of the lattice dispersion leads to
formulas which are essentially the same as those obtained from the Debye
theory, except at very high temperatures. The difference is that the
Debye temperature ©® is no more a constant but contains a small tempera-
ture-dependence. The deviation of © from the value determined from
room temperature measurement of heat capacity, for instance, becomes more
enhanced at lower temperatures. The temperature-dependence in © has also
been discussed by Wilson (1936).

In general, the usual Debye temperature value ©c (notation used by
Wilson) are in the same order of magnitude. It is expected, therefore,
that, as long as the Debye cutoff is used as a parameter which is to be
adjusted within a small margin in the neighborhood of its room temperature
value, the Debye theory is satisfactory in the present formulation.
Furthermore, it will be shown that various optical and infrared dispersion
properties are not very sensitive to a small variation in ©,

The delta function in Equation (135) is eliminated by integrating
over u from (-1) to (+l). The existence of a real p such that the argu-
ment of the delta function vanishes for all q between zero and q_, has
been asserted by Wilson (1936) in his calculations of dc conductivity.
That the same can be asserted in the present work involving an electro-
magnetic field is shown in the appendix thus.

q
P(g§) (ky = e“E2 f o q3dq G(r) (q) []-‘f(El" rEq— S&’lw} (138)

24ﬂ2m*w4h2kl o

In obtaining Equations (135) and (138), it has been assumed that

N(q), ;ﬂ and hence G(r) (q) depend only on the magnitude q and not on the
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angular variables. The only part of Equation (132) where the dependence
on the azymuthal angle appears was in (E-q)2 with k; as the polar axis.
The argument of f(---) in Equation (138) results from satisfying the delta
(r)
(s)
multiplying Equation (138) Fermi function f(E;) and summing it up over
the initial momentum state k;, and dividing the entire expression by
the normalization:

function after integration over p. Calculation of (P ) proceeds by

\L £(E1) (139)
ki
In these calculations, we shall assume that the Fermi energy Ef
obeys the condition:
E_ > Aw, KT (140)

f

Thus, it is equivalently assumed that, for the frequency range that
is of interest, most of the transitions take place in the neighborhood

of the Fermi level, and P(§§) (k1)F(E,) differs from zero only in the
neighborhood of E; =~ E_.. With these assumptions being considered, the

f
density-of-states factor +¥E; may be taken out of the integral set equal

to JE}. Then, we obtain:
J— 1
(2 SH - ) £ ) xZ £EDP Y ()
ki / ki,
(141)
qo
252 3 (r) (r)
) lrnzmi‘wghzk Ef f T (DR (o)
O
where F(§§)(q) is the integral:
+ o .
(r) B e . 1
F(s) (@) = ‘%T—jjp dz 177 1+e”’®
(142)
z = B(Ey - Ef - rEﬂ - sHw)
a=

B(rEq + shw)
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The integral F (r)(q) can be evaluated exactly, and we have:

(s)

(S)(q) = (rE+ sh) [eB(rEq+ shw) _ | (143)

The power expenditure W(w) which was defined in Equation (96), can be
evaluated using Equations (141) and (143) and:

ﬁ = =6 1
wa = E = Ao (144)

along with the Relations (136) and (137), and it is in the form:

90
Nl 2
Z J_6ﬂ'2mvﬁisk Ef f qsqu(r)[F(f§) (S)} (143)
r=

* o

We substitute G (r) of Equation (131) into (145) and use:

N(q) = 1 ePEa g (146)

In order to obtain the power expenditure per unit volume, it is
expedient to introduce the effective number of electrons per unit volume,
n,- After some algebraic manipulations, we finally obtain:

2
- ReC TN° E2 7(w,T) (147)
n W= R I =
e m¥ / 2w
where R is constant given by:
3 1
R = 2:2:_ fﬁzgsz/(Zm*E?)E MK © (148)

and Z(w,T) is a function of both w and T given by:

M. Vol l-l_l 2
IJ(w,q) = _e sinfi(p) Js(i,a) d_(_e_)_ L Jap,o)
M ezu_l
(149)

H_1y2
-2 {fe =17 u Ke(p,a)

e2H-1
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() ()

04
3 (1) =\jﬁ Pay/(el- ey (" - 7Yy (150)
[e)
[0
K () = /p Pay/ (el ey (er- 7Yy (e¥- 1)
e}

This is the basis relation from which important dispersion relations will
be obtained in the succeeding parts of this chapter.

A close examination of the relations in Equations (149) .and (150)
reveals that z (u,a) approaches values which are independent of p and
hence w in the limit of p >> o and also when p—»0. In particular, when
u=»0, we have:

2,0 ~ I.° (@) (151)

where:
a

J.(a) =L/1 y5dy/(eY- 1 (1- e-Y) = J5(u,a)] p=0 (152)

-

o)

This is identified with Wilson's Jg <;%——>, and, more important, with
33

Grineisen's formula (Gruneisen, 19
resistivity when we multiply by a~°>.

for temperature-dependence of dc

The w-dependent quantity Z(p,a) has no precedence in the classical
theories and hence constitutes an important consequence of the present
theory.

For the coming discussions on dispersion properties, it is conven-
ient to define the quantity bep (u,a), the subscript ep signifying the
electron-phonon processes, such that:

o Z(p) = 1 Z(p,a) (153)
bep(“’m) - z2(0,a) Jso(m)

The numerical values of bep (u,a) can be obtained when we evaluate the
values of Jn(p,m) and K (p,o) for arbitrary values of w and T. The dc

quantities Jn°(a) and Kho(a) have been discussed in many references and
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are available in calculable forms. All types of integrals which enter
in evaluation of bep (u,a) are discussed in the appendix, and the re-

sults are given as follows (for n > 0):

n
1 —y p m.',v
‘ 1 n-m/ n\[ (a-p)  *
T (hoa) = 2ry > me1 M (\m, a=p_ g
o e
m=0
n-m+l at+ med m+ 1 m+1
F D) @ ™, gy
e -1 e“-l

o n-m+l _o

I @)+ D I, (o)
m+2 (e] n+1l
D™ W as -1 T } (154)
n
1 \ 1 - ' - m+1. m+
K (,a) = ™" m \> mt 1 T G\/ et (- [(wa) ST W‘
- - L
(e2H-1) (-1 | N S
n-m | _o o m+1 m+1  mtl
+ ef(-1) [Jmﬂ (atp) - J_ (u)] + (a-p) -(-1) 0
) =i -y
e -1 e -1

' [ 2 ey (DT J§+1(“)} - DD (e

u n+1 08
- D) g s O S S, @
- (1+e") £ (a50) (155)

where J;+l(x) is the same as what was defined in Equation (152) with the

only difference that the upper limit o in Equation (152) is to be replaced
by x, and:
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a

6, (a3b) :\/ﬁ Ydye ™ (155)
b

Numerical evaluation of the dc quantitieS‘{fg (x)}-is considerably

simplified in the limiting cases, x << 1 (high temperature) and x >> 1
(low temperature).

For x << 1, we have:

X (157)
o ~ n-2 n-2 n n-1 z n+1
Jm (X):f (y 'TZ‘Y '—%2_}’ + o..) dyzn_—l'x - 12(n+1x X.o.
o

and for x >> 1:
o0
0 Q n-1 i
J<x>SJ(oo>=nf &y _ N 1
n n J —gy:T—L = n: —n (158)
r=1
(e.g. J° («) = 124.4)
5

D. CALCULATION OF ELECTRON-PHONON DAMPING COEFFICIENT

The damping coefficient which is contributed by the electron-phonon
processes or the electron-phonon collision frequency as it is often called,
can be obtained in a straightforward way when we compare the expression
for (W) obtained in paragraph-C with the corresponding, well-known high-
frequency dispersion formula which is obtained by solving Drude's equation
of motion for a free conduction electron.

It is well known that the power expenditure {W? for a free electron
system is related to the optical conductivity o(w) by the relation:

Egogw! = 0, WY (159)
2

where (W) is the power expenditure due to one electron per unit time and

EZ is the energy density of the electromagnetic field. Upon comparing

Equation (159) with the expression for (W) in Paragraph C, we obtain the
relation:

o (W) = 1 wy®
ept™ - wg Rep al Z(p,a) (160)
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where Rep is a constant independent of temperature and frequency which

is determined by the properties of the lattice, and:

4 n e? \&
Yo T (4“ — (161)
mE

where Wy is the frequency characteristic of the electron plasma oscilla-

tion. w_ 1is generally outside the high-frequency limit of the free-
electron dispersion spectrum.

At ordinary temperatures, most of the w-dependence in Equation (160)
appears through w® in the denominator as in the case with the high-
frequency conductivity of Drude. Z(p,a) represents a relatively small
variation for changes in w. According to Equation (151), we have
Z(u,a)~ 7° () when p = 0. The last three factors in Equation (160) re-
produce the well-known Grineisen formula. It also reproduces the dc
damping coefficient derived by Wilson (1936) when we identify our g and

Np with Wilson's C and A™1 in the expression for Rep given by:
45N g7
N p® (162)
ep 2 Y2m*E MK ©

Thus, by making use of the relation:

bep(p,a) = Z(p,a) ~ 1 (163)

J: (a) w=ro

it is natural for us to identify the last three factors in Equation (160)
as a damping coefficient, Fep(p,a), similar to its dc equivalent[“gp

(o]
Fep (0 = Ry a; J: ) (164)
such that
o
L ep () “Tep () bep (s, (165)
and
Fep (@) | 55 Tepl® (166)

In this respect, bep (n,a) shall be named the quantum correction
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factor such that:

AT =T ° (bg,-1) >0 (167)

ep
represents the correction for w > 0.

For the sake of convenience in future applications, we write down
bep (u,a) explicitly:

Msin b (1, @) €D 5, ()
B o] -1 e’ sin J_(p,) - d Ja(p,x
bep (p,a) = [J5 (CC)] N L = e2p~_1)

H_1y2
9y el &(u,a)] (168)
(eZH_ 1)
The optical conductivity o(w) in the form of Equation (160) applies
only at w® >>Iép' A more general form is obtained when (w® + Fep2) is

substituted for w® in the denominator to make it consistent with the
dc properties. We thus have:

C ) = L% b G (e (BT e (169)
ep "’ =< ep ep Wo wo ./ ep

which gives us the familiar expression fer the dc conductivity:

w2 1'162

1 o} e 1
Tep (@) = 7=

(170)

s,

Tep(a) = m* T gp(oc)

when w is equated to zero.

A quantity which has essentially the same physical significance as
the present b (u,a) has also been obtained by Gurzhi (1958), and is
given by: ep

2 1 4 2“.
&) =
ou,a) m P kjp dv v Vo1

+ _v- v+
S~ VAT (171)

s}

® ~ 1 when u << o <<1. However, Gurzhi's formula fails to reproduce the
correct temperature dependence for dc resistivity and hence for heat
capacity in the limit y-+»0 for arbitrary values of o. It agrees identi-
cally with the result of the present theory when py >> a. Grineisen's
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formula for resistivity is compared with a heat capacity curve in FIGURE
15, and a good agreement is clearly shown.

A correct theory must be able to reproduce the timetested classical
formulas, be they dc properties or optical properties in the classical
limit, and the correction factor, such as bep in the present theory,

must approach unity identically when p—>0.

E. CORRECTIONS DUE TO ELECTRON-ELECTRON COLLISIONS AND IMPURITY
SCATTERING

Contributions to infrared absorption by the processes of electron-
electron collisions and impurity scattering have been investigated re-
cently by various authors. Some of the new developments are to be found
in the works of the Russian authors, Silin (1958), Pitaevskii (1958) and
Gurzhi (1959). Their calculations are based on Landau's theory of Fermi
liquids (1957). A metal which is commonly considered to be free of
impurities in the order of 10~% or less. For such a metal, the impurity
contributions can be safely neglected except at very low temperatures.

It is well known that even a small impurity content makes an important
contribution to the dc resistivity at very low temperatures through the
Restwiderstand" of Mathiessen. As for the impurity contributions to
various infrared dispersion properties, the investigations in a following
chapter revealed that, even at very low temperatures, the impurity con-
tributions can be negligible compared with the contributions by Holstein's
mechanism of bulk electron-phonon processes. This is in contrast to
common expectations based on our observations of dc properties. It
results from the important feature of the present theory that the
frequency-dependent damping coefficient, Fep(p,m), retains a large value

even at very low temperatures when p >> a. On the other hand, for an
w which does not satisfy p >> «, Tep’ at 0°K, decreases rapidly with in-

crease in wavelength, and thus the impurity and electron-electron collis-
ions become important.

gimilar conclusions are reached for the electron-electron processes.
It will be shown that the electron-electron collisions are insignificant
throughout the free electron spectrum, not only at ordinary temperatures,
but also at very low temperatures for many metals. Theoretically, the
electron-electron processes make more contributions at higher frequencies
and at lower temperatures. Except for transition metals and some multi-
valent metals, the correction amounts to a small fraction of the contri-
bution by electron-phonon processes in the high frequency region of the
free electron spectrum.

Thus, the above conclusions on the significance of the two processes
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are not in exact agreement with the suggestions by Silin (1958), Pitaevskii
(1958), and Gurzhi (1959). They suggest that these two processes may be
the only predominant contributions for most cases at low temperatures

and in the near infrared, and may be important at room temperature as

well for some metals.

For our investigations on the relative magnitudes of the contribut-
ions by the three processes, we shall use Gurzhi s formula fer the elec-
tron-electron collision frequency:

Foe (@) = 1o (@b, (1) (172)

.
b ()= 1+ (—%«— (173)

Fez () is the dc damping coefficient and is well known to be propor-

tional to ~ TZ,
We may write it in the form:

1
Fee () = Ree = (174)

. . . . o
Ree being a constant having the same dimension asI‘ee. The frequency-

dependent factor given by Equation (173) may be considered as a quantum
correction factor in the same sense that bep (p,a) has been treated as the

quantum correction factor for the electron-phonon collision frequency.

As for the impurity damping, or the electron-impurity scattering
frequency as it is often called, it is sufficient to remember that it

constitutes a constant, additive quantity,I“ﬁ, to the over-all damping

coefficient, I (u,0), and is independent of both frequency and tempera-
ture (or nearly so). Thus, the over-all damping coefficient, with all
of its quantum corrections taken into account, now takes the form:

o)
I (p,a) = Tep(u,a) T e (Hea) +T
. (175)
=T "(a) b (p,)
Fo (b +I'%p +T°
b(p,q) = ep ep ee ee M (176)

0
+
P8p+rce)e FM



113

This is to be wused in various dispersion relations where the damp-
ing coefficient appears. For the reasons that have been explained in
most cases it will be satisfactory to consider only the electron-phonon
term Fep (p,a). For example,[‘eP alone yields values of low temperature

~

absorptivity of copper and silver at 4.2°K and A £ 1 ~ 1.5u in excellent
agreement with the observed values (up to ~ 2 percent). On the other
hand, it is expected that Iép (u,a) will not be sufficient to explain

the observed properties of those transition and multivalent metals in
which the interband transitions involve a non-zero momentum tpgpsfgy.
Those scattering processes which involve a momentum transfer Ik,- k.,
smaller than a certain non-zero minimum do not lead to interbang trans-
itions.

Finally, it may be noted that the significance of the electron-
electron collision term, Feg, is directly related to the presence of the

Umklapp processes. In fact, it has been pointed out (Gurzhi, 1959) that
the electron-electron collision term vanishes if the Umklapp process is
not present. The relative importance of the Umklapp processes at low
temperatures, as compared with the usual phonon mediated processes may
be understood in the following manner. Consider that the average momen-

. . C TN
tum transfer in electron-phonon processes decreases like ~ - v and

the density of phonons also decreases rapidly with decrease in the

average momentum transfer. The result of these is the rapid decrease of
resistivity, ~TS, as T is decreased to 0°K, while the electron-electron
collisions, activated by the Umklapp processes, have the'well-known ~TZ-
dependence in resistivity. This should, therefore, be even more true

in those transition and other multivalent metals in which the interband
transitions are very important. A non-zero lower limit in momentum trans-
fer is present for such transitions.

On the other hand, except for the latter special cases, the above
statement is not necessarily valid in that range of the optical or
infrared spectrum where the quantum correction factor for electron-phonon
processes increases sufficiently fast with decrease in temperature to
compensate for decrease in the dc quantity Fe;' For instance, for metals,

be they monovalent, multivalent, or transition metals, which involve no
non-zero lower limit in momentum transfer, the quantum correction shows
the temperature-dependence to be ~ %T while Fap(d) decreases as ~ T°

when fw >> KO >> KT, thus compensating each other exactly. This is an
important consequence of the present theory.
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F. CALCULATION OF e(u,a)

In Paragraph D, we have taken o(up,a) in the form:

w
o T
2

41 w™ +r

where ' 2 in the denominator comes from Drude's classical equation of
motion for free electrons withI'©® replaced by I (u,x). Upon solving the
same equation, the expression for e(u,a) is obtained in the form:

W
1-¢ 02 1

= =
4T 47 w™ + T

= (177)

where the denominator has an additional frequency-dependence, besides
w?, coming from b(u,a) in I'(u,a).

Unfortunately, unlike the classical Drude equation, Equation (177)
is inconsistent with the Kramers-Kronig relation,
o8]

l-c = __2 dw'
- - f ol 24y (178)
(o]

(wl 2‘(.;.)2)

We shall calculate ¢(u,x) from Equation (178) for both cases where
(i) Tep (p,) is the only important term and (ii)D go(u,a) andI‘M need
be consxdered In any case, an exact solution to the integral is diffi-
cult due to the complicated structure of w-dependence in bep(p,a), and
a suitable approximation method has to be used.

When o(w) contains only Pep' we have:
+ @
w 2 Jf Lo b dw'
l-¢ = 0 ep ep
T ) 47 12 Oy 2y 2 12_ 2
-00 (w'=+ (Fep) bep) (W' =-ws)
o (179)
.2
- W 1 /P bep(x) dx
’ A= ro .o 2 2 2 .2
( ep)s -=» (x=+ bep(x) %) (x7-y%)
where X = (r \ and Y = Q. > and where we have used:

ep'

bep (h,a) = bep (-p,0) (180)
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In order to investigate the property of (l-¢) in the two extreme limits,
W >> (f'gp)z and w—>0, we use the relation:

1 (-1) 1 1
(x°+ b%) (%= - Y2) = (Y° + b%) LXZ + b® - x° - Y%

and we have:

+00

l-¢ = Y2 1 [ 7h b (x) dx
am o (T LJ %+ b7 (7 + bY)
P (181)
o b (x) dx 1
[ T T

=00

where the subscript ep has been dropped for convenience, and be's
appearing in the integrand are all functions of x and not of y.

Before attempting to solve Equation (181), it may be remembered
that bep (x) is a very slowly varying function of x throughout the entire

spectral range except when the temperature is such as to give 1 < up < o
in the very far infrared, and that be (u,a) is ~ 0(l), being always
greater than unity for w > 0. P

In the limit of p >> a, Equation (181) now becomes:

W o 3]

1—6 = (6] ep (182)
47 471 UJZ
where:
+ 00 [e]
8T, = L j[ b (%) = 8 ‘/n o(w) du (183)
T - o0 (X2 + b2) W 2 0

In obtaining Equation (183), it was assumed that b (x) = b (-x) and
that b(x) does not have a singularity in the complex x-plane.

We notice in Equation (183) that, when o(w) satisfies the sum rule:

0

> /P c(w)dw = Y52 (184)
b1 ‘O 4T
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~

we simply have & ep = 1.

In the limit of u << 1, we obtain from Equation (181)

1-c w o ~

o = o) 1 o
. =) __€ep (185)

4 4T Cop) e

where:
4- O + o0
S~ ;i '
LB = ‘!11 K { dx g(x) - - - C21X b (%) - N
B _ < - (n+ b7) (x= + b ) 7w (x= - ) (n+ b))  (186)

Tl ~

The presence of 1 in the integrands implies that, in solving the
integrals by a contour in complex x-space the zeros of b (x) must be
taken as the zeros of the integrands and not as singularitié¢s of the

integrands, for all />> 1 > 0. In this case, it is easily shown that the
second integral vanishes, and we have:

+ ©
8"~ s A
€p = 1 & / dx b(X) /‘ / >> >0
ég gt - © (X2+ b2) (b2+ n) (187)

The integrand is taken to vanish at the zeros of b(x).

Upon comparing Equations (182) and (185), we construct one possible
form of (1-¢), namely:

1-¢ “o E)ep (188)
4 a4 wc (¢ 9 - 5

ep)® B

\

where Bep and é may or may not depend on w, and if 6ep is independent of

w, we simply have:

Bep = 83 = 1 (189)

Taking 6ep and 52 to be independent of w is essentially equivalent to

evaluating the integral (28) by replacing b® of denominator by a parameter
B7. 1In fact, such an approximation is reasonably well justified for bep(x)

is a very slowly varying function of w for all -« < x < +w, except for
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the case of 1€ u << o (which can occur at very low temperature and in the
very far infrared limit). The parameter which best approximates the
integrand may be found by a successive approximation, solving the identity
equation:

B (@ = b, (i o, @ (190)

T S
‘HO_& KT i

where E(a) is independent of w.

By such an approximation, Equation (179) is readily solved, and we
obtain:

112

o 1 (191)

ep
which applies to all temperatures and w's except for the case of
1 << p << @ in which bep can be a very rapidly varying function of w,

although the over-all magnitude of (Teg bep) is generally very small.

It is seen that Equation (191) is identical with Equation (188)
when we put aep - 1 and take B as a [requency-independent parameter.

Further, the sum rule Equation (184) is automatically satisfied.

The said statement that bep (x) has zeros but no singularities in

the complex x- or p-plane can be understood upon examining the complete
expression of bep (f,a) in the complex [-plane. From Paragraph C, we

have the following expression for bcp (m:
- I, - . IT -
b(f) = b () + 1 b7 (W
b= Ry toing

L, _ , N
b () = % L &Ul(e 21 cos 2p, -1+ uzezpl sin 2, {}I (0

n
M
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I ,-
+ J
. (W)

[pg (e2“1c032p2 -1) -p; eM1 sin 2p2] }.

[pl (e2“1c052p2-1) +u,e 2H1gin 2p2]

- < (ep'l cosus _1)2 _egulsin“,g\‘[{kli (Cl) J!'ZKi (L-l)
J

+ ZeHlsinp2 (e“lsinpz-l)

EeHICOSMZ-l)g—eEHlSinpé)

X ( Iy + 2 (a)?}] (192)

where we have put:

- I - R |
Iy (Fea) = I (w) + 1 J " ()
- I ,- N I
K, (o) = K (@) +1 K° ()
¢ A[ Y, _TY\ M p={% ]
I, I - n (e’ +e "Ye"lcosus-e="lcos2pu-1
J = J - = d =
R A I S
(o]
< 2 Y. =Yy b
5 11(_) - -3 11(_) ~ n, E 1sin2u,-(e’+e 7)e 1sinp2]
n T Ty T YW D(f1,Y)
o
¢ Y, "V K 2k
K 1(_) K 1(__) ~ n, Re +e “)e’ lcosps-e<" lcos pz-i]
n H - n IJ' _‘ y Y (ey_l) D(_ )
‘O MY
I1 11 3 n [ézplsian —(ey+e-y)eulsinu‘]
« M - x e - fy dy N 2 (193)
A (e”-1) D(k,y)

where:
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D(p,y) = [key-e“lcos uo) S+ e2M1 5in? p;]

X Be“lcos o= e Y2 &+ ezulsinzpé] (194)

Similarly, the expression for bII(ﬁ) is obtained upon replacing

I I1 I IT 1I I I ,
(Jn, Kij and (Jn R Kn]5 by (Jn , Kn ) and (-J, ,+ K, ), respectively.

A detailed study of the Expressions (192) and (193) shows that b ()

has no singularity, but has an infinite number of zeros on the real axis
of the p-plane at

=}

(195)

This implies that in obtaining the solution in Equation (191), we
must make sure that only those values of B which meet the condition:

poé + —rz‘— - (196)

:n=1, 2, 3, 4,

are considered. We further notice, in Equation (190) which defines é,
that any P which is found from Equation (190) satisfies the condition
in Equation (196) automatically. The solution to Equation (190) is

obtained upon putting p, = 0 and py = poB into Equations (192) and (193).
We thus have:

Bla) = b (1n P

= _1 +sin2(uop) [ tan (poB) JSI (1oP)

Hoé JSO(a)
+ ( poB) 1l-cos(p,P) ( 5+ 2K4I\ ] (197)
—\ ,
cos(pgB)

where we have used the relation:
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r,, = Ir,. =
Jn (ipoB) _ Kh (ipoB ) _ -2 tan (poé) (198)

Jal(GuoB) K " (ipoB)

and:
a

JnI(iuoé) = / v dy [(ey-cosuné) (cosugB-e ) + sin®(u p)]
“o [key-cospoé)2+sin2pgﬁj [cosLLoé-e-y)2 + sinz(poéﬂ

o4

K "(inoB) = jﬁ y'ay [---] (199)
o -1 [--d[--]

Evaluations of B(a) in the two limiting cases, o >> 1 and o << 1, are
simplified considerably.

In the limit o >> 1, we have:

(o]
I ~ -, N m m+1 -
Jn = cos (pgPR)n. [ 1- ) —z——;;;:I cos (koB) 1 (200)
n+ i
[v.] m-1
- . ) \
I = 1 1 . 1 1- s cos®TH(pLF ﬂ
€1 % nlcosuof) | ) W( ). (boB )
m=2 §=1

For n=4 and n=5, it is safe to take only the first terms of Equation (200),

and we have:

Ji ~ 120 cos (poé) ; Ji ~ 24 cos (poé)

3

Ky ~ =205 (ioB) (201)

J° ~ 124
5

On the other hand, in the limit o << 1, it easily follows that:

nHL o cos (uof)

1z Q
n 8(n+1) sint < toB >
2
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Ki >~ D cos (u_B)
o sin? ( Moé \1 (202)
-7/
- miy
boBF = — (m=0, 1, 2, ...)
J° = % Qg
5

Thus, the identity Equation (197) is reduced to the following two corres-
ponding to the limits, o >> 1 and o << 1, respectively.

_SEEEZf__ Z (1 + sin® Hoé) [sin (Hoé) + (Moé) (1-cospoéﬂ (203)
Ho 2
(1oB)® = (1+ sinuyp) [.l.of,zsin(uoé)+ N (1-cosp0f3)) (204)
Mo 4 sin® <EOB\\ 8
——

These equations are in a numerically solvable form provided that we
know the value of u, and hence Peg (). The solutions to these equations

may be obtained with the help of our formula for I' © (o). According to
. L ep
Equation (164) it is seen that:

o ~ L1 <1 (205)

a

in the limit o >> 1, and the only possible solution to Equation {203)
exists when (p,B) << 1. Thus we find:

B~1 :aq>>1 (206)

On the other hand, if o << 1 (high temperature), Equation (164) tells us
that Pzp ~ T and py~constant such that:

ko~0 (1)

According to Equation (187), b(x) and p are ~ 0 (1). We thus find,
from Equation (204):
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. 0200 7
B b st g« (207)
PERYN CHA
4sin® & ; |
= T
where (pgB) ~ O (1) <—2— .

According to the result shown in Equation (206), the denominator in
the dispersion formula for (l-¢) is to be taken as:

P o (208)
ep
when o >> 1, while that of ¢(w) is to be taken as:
1
Wt o+ (FZP)Z(B)Z (209)

with b > 1.

In the forthcoming applications of the theory to practical cases,
we shall in general take B as a temperature-dependent parameter to be
determined by fitting theoretical equations to experimental curves,
while bep is calculated theoretically.

G. CALCULATION OF ¢ (u,a) WITH THE ELECTRON-ELECTRON COLLISIONS
AND IMPURITY EFFECTS TAKEN INTO ACCOUNT

We have thus far considered only the part of dispersion which is
contributed by the bulk electron-phonon processes. For a more general
calculation of ¢ (u,a), we must use the Equations (175) and (176) in the
Kramers-Kronig relation. Aside from this, the calculational procedure
is similar to that of paragraph E.

For the sake of convenience, we define the following notations.

W, ee M y

Q _ ro o o ' N
o(a) < ep Pep ¥ ee + M\ Q= <F é% bep+ ro+ro |

[szee_(a)]'l - <—‘§—rr@\2 r2 (@ (210)

i /
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5 2 1 2 8o 7z 2o
Qiz—z Szee l:l"f'z{-T'e'g] i'l:1+2 9 }

ee

Then, the dispersion denominator in o(up,a) can be put into the form:

W® +2%) (W +2?)

(w? +T 3 = (211)
2
Szee
and we have:
g 2
(J.)i Qee < g2O(w) + 'Q'_—(:e >
o(p,a) = i > (212)

(w2 + Qi) (w® +»Q%)

where $'s without bars represent quantities of Equation (210) with

Ee replaced by b,, (u,x), where Bep is a_temperature-dependent but
frequency-dependent parameter similar to B assumed in Paragraph E. A
close examination of § * in Equation (210) shows that:

s, %1 >0 (213)
In solving the Kramers-Kronig relation, we shall again use éep in
place of by, in the denominators. This approximation is just as much

valid as the same approximation that was adopted in paragraph E. Then
we have:

T <90(m')+ w'2 >
1-€ = - Y42 2 k/ﬁ dw' ee

e % ¢ Qee
- o 0)'2 + Q+2)(W'2+ 52_2)(0012_0)2)
(214)

+00 Q9 , w'2

U)og 2 o (b.) ) + Q
~ - ee\jp dw' ee

47

-0 (va + 522) ((1)'2 + QZ)((.O'Z _w2)

This may be solved by taking the contour integral in the upper half
of the complex w'-plane enclosing the poles on the Im-axis at w'= +i Q
and +i Q-, the semi-circular arc extending from w' = +x to +ix and then
to -o, and the contour being indented above the real points at w' = + w
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We thus obtain:

2 2
1-€ Wo Q’ee
-2 - @
4T 4T ( as _)
gz‘0 [iSZ -] _ Q - \ gz O[i.gz ‘] _ Q+ \‘ (215)
4. gzee / Q%— Q /
X _ ee
w? + Q% w® + Q2
In general, we have:
Ro <1 ; w <1 (216)
Q Q
ee ee

for all w in the free electron region of spectrum, and thus:

- Q
8, oz (je\ (217)
o 7
2
(ng - sf y = Pee

so that Equation (215) can be reduced to the form:

1-c ~_ Y9 L. Qo %) -1 (218)
an 4 ws o+ R ’ Qo

where QO (100) is real since bep (ix) = bep (-ix) and the parameter Bep

is found from the identity equation:

B= by, GO (219)

a A o
§ = hB(rg, B+ Tt I'y)

which becomes identical to Equation (197) in Section IV Paragraph F when Pge
and T'Q are small compared with the electron-phonon contribution. We found
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previously that, at low temperatures (a, >> 1), we have:

(6] : 3 ~
P, <1 s B~ (220)

While<FZe (a) decreases relatively slowly, like ~T2, as T is decreased

and p& is the constant, "Restwiderstand' term, so that, in this limit:

(AR @O +ry =&, (221)

independent of B; Therefore, fortunately enough, we need not be concerned
with evaluating B at all at low temperatures and (l-¢) is simply given

by:

L-c ~ o° L Do S>> 1 (222)
a4t amn w= +(Ig; +I‘gi =

On the other hand, at not too low temperatures, Fez and P; are both
much smaller than pgp B so that the expression for (l-€) is nearly the
same as that obtained in paragraph F.

Similarly, the properties indicated in Equation (216) enable us to

write down ¢ in a reduced form:

wo2 Qo(p’&) < 1+ W= \‘ (223)
Q

ax W g o ()] T

which is to be applied whenever Equation (108) is applicable.

It must be remembered that the electron-phonon part of Qo(u,a) in
Equation (223) is not necessarily smaller than (er + P;) because
bep (n,2), instead of B, is multiplied to f;;(a) inS?O. In fact, it is
found that the rapid decrease of T ; (i.e., like ~ T®) with decrease in
T is exactly compensated by the ~ Tg - dependence of bep(u, @) in certain

parts of the free electron spectrum.
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SECTION V., ABSORPTIVITY, REFLECTIVITY, OPTICAL SIZE OF CONDUCTION
ELECTRONS, AND OTHER PROPERTIES OF METALS

A. BASIC FORMULAS FROM SECTION IV

The formulas for optical conductivity, o(w), and dielectric constant,
c¢(w), were obtained in the preceding section, first by considering the
contribution of only the electron-phonon processes, and second, for the
more general case where electron-electron collisions and impurity scatter-
ing alsoc need to be taken into account.

In the applications that follow, we shall use the general formulae
obtained for the second case.

-
When the quantity (:%g——> is not neglected, the expression for o(w)
and <(w) take the form: ee
_w 9z
o(w) = o 9— Go (w) (224)
470 Q-
1
2
E-e (wﬂ - %
) (225
where: Q 2
1 2 4 g2
o
2 _ 2,352
Rz = w™ + 87
W2
L+ Qo Zee
Golw) = , >
1 +< w >
Ree.
' 2
1+ 2 (—‘“ >
G, (w) = flee

(226)

(o]
9, = Tep (@ by (1,2) +Tge (@) +Ty
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90 =T gp(® By, (@) + ro (@ +Ty

The multiplicative factors, Gy and Ge, are corrections due to electron-
electron collisions and, in general, are of the order of unity. The
entire temperature dependence in Equations (224) and (225) appears only
throughszo andgz Onlygz shows frequency dependence through the term

(u,@). The Equations (224) and (225) are more general than Equations

2
(223) and (218), since the latter two neglect < W > which is small

2 Qee
compared to unity. In general, \ is small compared to unity

throughout the entire free-electon spectrum (i.e., A< 0.5~ 1.0 u) for
all temperatures, so that:

2
-

G (w)

2
Gg(w) ~<1+ 7 “Q >
o ee
\2

. . . W
In order to justify this statement, let us compute <——Ef——r/ for a
ee

(227)

metal which shows a relatively large contribution of electron-electron
collisions, and see at what wavelength the relations of Equation (227)
are not valid. For this purpose, we write Pge (a) as:

1

0
T e (@) = Ree oF (228)

where Ree is independent of both T and w. Then, we have:

- R
W 2 3.84 x 10718 ee
< Tee ) - A= < e 2 > (229)

nc

P A= —=E— (W)
For most metals, the values of Ree range from ~1010 sec”™t to ~1012
sec™) while ® is of the order of ~10% (°K). Therefore, for ® = 300°K

R = 1012 sec-!, the wavelength which gives w? » =~ 0.1 (~10 percent
ee —335:3

correction) is found as 0.2 ~ 0.3 p, which is already outside the free
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N
electron region of the spectrum. On the other hand, ( w2 ' is not

o fle e’

0 ] >> 1 in the near infrared.
Qo J

necessarily small, since we have <

In order to predict values of various dispersion properties such as
the optical constants, absorptivity and reflectivity, etc., at different
temperatures by knowing the values of these quantities at one temperature,
it is sufficient to specify the temperature-dependence of Q, and£2o in
addition to the values of the constant parameters entering in QO Q(:

= 3

and Qee' At not too low temperatures,® o and %6 reduce to:

~ (8]
Qg = Tgp (@ b (k0

(230)

2, =T () By, (@

where éep (o) and bep (u,a) are given by Equations (197) and (168) re-

spectively, and Feg (o) is given by:

(6]
= R 1
I1ep(OL) ep 5 J2 (@) (231)
In particular, for u = (%—%%—\ >> q = (—J%— \, we have:

by, (1,0) ~ Eep (@)

1 o 1
——‘ 306 1t + et —L 1 (232
570 () g RO

This relation applies in the spectral range of A < 10 p. At very low
temperatures (o >> 1), we may use

o]

o}
~ )
o} <?ee () + I'm \‘ ; T >0

N
o
=
1
o

R 5 % << o (233)
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o

where only Fee retains a temperature-dependence of ~ T?. As the numerical

computations in a later section will show, the residual phonon term

' A

Reg ' generally has a value which is comparable with the room temper-
at&ge value of (pe;bep) and hence is much larger thanlﬂﬁ and FeZ' This

is clearly in contrast to what might be expected from the classical theory
and is also in contrast to the suggestion by Pitaevskii (1958), Silin
(1958) and Gurzhi (1959) that, at low temperatures, only the electron-
electron collisions and impurity scattering may play a dominant role. On
the other hand, it provides strong support for Holstein's suggestion
(Holstein 1954) that the bulk electron-phonon processes may make a large
contribution to abscrptivity even at a very low temperature.

The quantity, Qee’ entering in the correction factor, G (w), is inde-

pendent of both frequency and temperature. For convenience in practical
applications, we write G . of Equation (227) into the form:

.

, R +- N
Gy = (1 + ee 5.2% XElO ‘: (234)
- Q5 AT e .
Ain 8

It is easily seen that the value of G (w) remains of the order of unity
even at very low temperatures, since according to Equation (233):

R ia
(G.-1) = 10 ce S.Zg XZlO LS o
C A ©
ep
(235)
R 40
ee 5.29 x 10 ~ ~
~ 0 l? S H T= 0K
P << o

The first equation is not large since Ree << Rep and the second is not

large since A% is itself large.

In the following part of this section, we shall compute various dis-
persion properties for different spectral ranges applicable at any tem-
perature. Discussion of these properties for different ranges of tempera-
ture is emitted since the preceding discussion on the temperature-depend-
ence of Qo, QO, and G, are sufficient to specify the temperature-depend-

ance of other dispersion properties.
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In what follows, the free-electron spectrum is divided into four
. 2 2 72 2, L : 2 2 =2 -~
segments: [i] w® << QO, Q, << w ﬁ@] ws = g, Q5 << woZ3 [;1ﬂ Qg, Qg
K w? K woz; [iﬂ w? < woz, where w, Ls the frequency characteristic of
the electron plasma such that € > 0 for w> wy and € < 0 (free electron
region) for w < wg-

B. OPTICAL CONSTANTS, n AND k

The fundamental relations between the optical constants (n,k) and the
dispersion properties (o,c) were derived from Maxwell's theory of electro-
magnetic fields in section II. They are:

e(w) (n® - k3)

il

(236)

nkw

a(w)

1
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where (n,k) constitute the real and imaginary parts of the complex index
of refraction N(w):

N(w) = (n - ik) (237)

Upon inverting the relations of Equation (236), we obtain (n,k) in
terms of (e¢,c) as follows:

- s L 94
nz‘/"geT o(w) +{1+ —%\2}2 }2
2

(238)
_— [ an® N2 i W 1
k = v/|d -8 (w)-%{} + <—7;E—— }f 2
2 L J
where 6(w) has the meaning:
+1e>0 (w0< w)
8 (W ={- 1e<0 (wy> w) (239)

and where ¢ and ¢ are to be substituted from Equations (224) and (225).

Substitution of Equations (224) and (225) into Equation (238) yields
the following expressions of n and k applicable in various spectral ranges
where w < wy:
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1 Yo
n ~k =
2 Yw &
c o -
T -1
- de [(b -1)—eP—+1] 2 (240)
ep 0
where: 5
2
% 1M 1
%c ~ &7 o m* o
(241)
o _ o o) o \
= <1“ep + Fep +FM /j
At not too low temperatures, we have Fe; = I’O, and:
c !
~ Kk ~ dec -5
n~k= ep (242)
At very low temperatures:
re ~r°,ro
ce (243)
independent of w, and:
T
O o~ —_——
red R ><124<® | (244)
{ii} w2 %ggoz, @2 <L w2
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J s 2 2
<<
{111} 520, QO < W wo

0 -
na~f—=Gy 1 = ( 2 + constant)

w (246)

where Q and Gg represent 2 and Gg with bep (u,o) replaced by Bep (a)
given by Equation (8).

{iv} w2 S w02

"y

k

. _ / W NEY B 1L
CEEN [ () Y

In particular, when w ~w o, e have:

56 N1
nA~k~ 1 < S L 2 «w 1 (248)
/2 Yo o/
e =0
Q
g = 0
47

Equations (240) ~ (248), for n and k are plotted qualitatively in
FIGURE 15 as functions of A.

C. ABSORPTIVITY AND REFLECTIVITY

In general, absorption in the free-electron region of the optical
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spectrum is attributed to two separate mechanisms; bulk process and the
anomalous skin effect. The bulk absorption includes contributions by

the electron-phonon processes that was suggested by Holstein (1954) and

is the heart of the present theory, as well as the usual electron-electron
collisions and impurity scattering. The theory of anomalous skin effects
was first offered by Reuter and Sondheimer (1948) and was later elaborated
by Dingle (1952, 1953) and Gordon and Sondheimer (1953). Theories which
formulate dispersion with consideration of all three, anomalous skin
effects, electron-electron collisions and impurity scattering simultane-
ously, have been developed by Pitaevskii (1958).

Further attempts to formulate the bulk electron-phonon processes
have been made and a formula for infrared absorption has been obtained
by Gurzhi (1958) by sowing the transport equations for conduction electrons.

The infrared absorptivity obtained by Gurzhi applies mostly in the
near infrared, and agrees exactly with the result of the present theory
in the same limit of the free-electron spectrum, although the calculational
methods adopted are different. The present theory applies to virtually
the entire free-electron spectrum for all temperatures.

Denoting the bulk absorptivity, skin absorptivity, and total absorp-
tivity as AB’ AS’ and A respectively, we have:

A = AB + AS (249)

The total reflectivity, R, is simply, (l1-A). The skin part of absorp-
tivity is important only at very low temperatures, and will be neglected
at all other temperatures. The theory of anomalous skin effects was
proposed originally in order to explain the low temperature absorption in
metals. That skin effects alone cannot explain the observed low tempera-
ture absorption has been made clear in a number of papers, and it was to
bridge this gap between theory and experiment that Holstein (1954) offered
his mechanism of bulk electron-phonon processes. The results of the
present theory not only support Holsteins's suggestion, but also show that
such a bulk mechanism, for many metals, is far more important than the
skin absorption even at very low temperatures.

It is well known that, when the anomalous skin effect cannot be neg-
lected, it is diffuse rather than specular reflection of electrons at the
metallic surface that contributes to low temperature infrared absorption.
Thus we shall use the well-known formula:

3 F
A, = 4 (250)
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as the absorptivity due to the electrons scattered diffusely at the sur-

face, where Ve is the Fermi velocity of electrons.

We obtained expressions for the optical constants (n,k) in Equation
(108) as functions of the parameters ¢(w) and c(w). Therefore, in order
to obtain absorptivity of reflectivity as a function of (e,¢), we shall
make use of the relation:

A - 4n (251)

(n+1)2 + k%

where (n,k) contain contributions from the bulk alone. Thus we readily

obtain the relation:
1
r o \ 2 L
2 | o(w) N1+ ( &L= 12 (252)

Me(w)+{l+<%>} T SR (e ﬁﬁ]

Upon substitution Equations (224) and (225) into the above, we obtain
the following results for various spectral ranges w < W

(i} «® << 9.2, Q2 «< w2 (Generalized Hagen-Rubens formula):
o o o 8

, w2 \L
Ay ~ 23/2 ————g—— 2
w,m

il

re? N\L
f v _-ep 1y B
2 o ( 1 + o (bep 1) (253)

where the same remarks apply to the correction factor to the right as in
{i} of Section IV, Paragraph B. This correction factor can be signifi-
cantly 1arger than unity at low temperatures. At not too low temperatures,
we have Iép ~I'% so that the correction factor is simply b 5 Even at

room temperature, this can introduce a correction in the order of 10 ~ 20

percent if:
\2
2 B CHE
w > < /ﬁ 7/‘\ (254)

Equation (253) is exactly the Hagen-Rubens formula when the correc-
tion factor is equated to unity. The original Hagan-Rubens formula for
reflectivity has been found to agree well with observed values, and our
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formula for reflectivity:

0 1
R=1-2/—%— (1 + —F]:%P—- (bep-l)\,z - (255)

Y de

is expected to improve the comparison with the experiment. For this
reason, we shall call Equations (253) and (255) the ''generalized Hagen-
Rubens formula':

(i1} o® ~ 02, @& <o ® O < 10p at T = 300° K)

2,0, \E
Vil G b
,\3/2<Q2 (L)_-LU//
2

W s

o Qn Q \\ 2 %
(e 239
1

>
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(iii} 2 2,2 2 < o? << 0 2
(o] (o] o

Q -
Ay ~ 2 <—E°——\ Golw) = —E o (86G) (257)

where:

N 2\
W
= (]ﬂ b + 709+ p; +-7§———5, (258)

(e 1)

- 2 N
~(r°b +———1 :T>0°K
€p ep ee

At very low temperatures and for p >> a, Equation (257) reduces to:

R +6 R
A = m¥ < ep +5.29 x 10 ee > ) .
P T e 10 Fer / hinw (B9
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The skin term A of Equation (250) must be added to obtain the total
absorptivity. This formula will be used repeatedly in the future in
specific applications, and it will be shown that it gives values in ex-
cellent agreement with the experiment. A very interesting feature of
Equation (259) is the absence of temperature dependence. Further, the

3

R '
dominant term represented by ( ep | does not contain A-dependence. The

values of Rep and Ree are in ée%gral of the same order of magnitude as

ng and ?eo, respectively, of room temperature so that the quantities
within (---) represent a large value while, classically and from some

existing quantum mechanical theories, the electron-phonon term is expected
to decrease rapidly, like ~T%, when T is decreased to 0°K.

Now, let us compare the magnitudes of the two terms with the help of
some typical numbers. Many metals have Rep =~ 10-2 ~ 101" sec-! while

Ree is of the order of ~109 ~ 10*' sec-¥ and, for exceptionally large

case,~10* sec-!. Thus, for R = 10 sce-', R = 10+ sec-1, @ =
ep ee

300°K, and A= 1u, we have:

R _ 10'@ -1

ep =10 sec (260)

10
Ree -
5.29 X 100 7= = (0.06) x 10*%sec *

In this casc, the electron-electron collisions introduce a correction
of about ~ 6 percent, while, if we take Ree: 10 sec™!, the correction

is as big as 60 percent. Thus, it is clear that, while the electron-
electron collision plays a relatively small part even at very low tempera-
tures for many metals, it can be quite significant for some special cases.

{iv} WL w @
~ "o
, - < \2 W o 23 1 T
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B r - Q 2,u)ﬁ2 23 | a1 fm2’2\t ?2 2w 2 2
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1 +({—¢C ————fg\ 2 .12 {——% F “{T———' —=X =
HL {- <‘ w :> K WE =W J/ }— 1J H; 26w ’hL Li W GC/ (ﬁf}wd”'~
o J

12
+ /K—'qw% : (261)
wy "W



137

In particular, at «® &'wi, this is reduced to:
S 9, G NL
Ay~ 2%/ K. ° w( S (262)
o ,

At such large frequencies, the second term in Gc(m) due to electron-

electron collisions may become predominant, especially for those metals
which have large values of Ree.

The bulk absorptivity and reflectivity are plotted qualitatively in
FIGURE 17, where the significance of the correction factor, G (w), is
shown in the high-frequency limit. N

D. TEMPERATURE-DEPENDENT SCATTERING CROSS-SECTION, OPTICAL SIZE OF
ELECTRONS, AND THE VIRTUAL MASS OF LIGHT QUANTUM

From our formulas for temperature-dependent optical constants, (n,k)
or (c,c), we can define the temperature-dependent scattering amplitude,
scattering cross-section per electron, and hence the optical radius of
the electron. By scattering cross-section, we mean the effective cross-
section of a conduction electron which the external electromagnetic field
sees for interaction, including both pure scattering and absorption. In
this sense, it may also be called '"the dispersion cross-section per
electron." 1If such a cross-section is denoted as = (w,T) measured in

cmg, the optical radius of an electron, a, is defined as:

ra = c (263)

and is measured in cm.

The concept of "virtual mass of a photon’ in metals (and also in
dielectric media as well) is a rather new one and its definition is help-
ful in a qualitative discussion of infrared dispersion in metals. A light
quantum of frequency w, when it enters a mediumywitb index of refraction

)

n > 1, behaves as a light quantum of frequency,(f—— < w, as if it sud-

n
denly gained a nonzero mass mp and that:

W \\\2
2= < T L kEe? (264)
n P

/
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This is a relation which is often used to obtain the expression of
n in dielectric crystals, and is not anything particularly new. A quick
glance at the relation reminds us of the familiar expression for relativ-
istic energy of a particle in terms of kinetic and mass terms. Thus, we
may conveniently define the first term of Equation (264) as the
kinetic term and the second as the mass term, so that:

m = =l (265)

Likewise, we may treat the mass term as a potential term such that an
increase in mp and hence a decrease in the kinetic term correspond to an

increase in a potential of some kind. 1In fact, the physical picture of
dispersion properties, at least in the free-electron region, can be better
understood in terms of such an argument. For instance, the increase of
reflectivity of light by a metal with increase in index of reflection may
be explained in analogy with the increase in backward scattering a part-
icle by an increased positive potential step, and hence a smaller kinetic
energy in the new potential field. We are essentially applying our
knowledge of the elementary particle picture to optical dispersion in
contrast to the usual practice of applying optics to massed particles.

We shall now calculate various properties explained above with the
help of the relations of Section II. Upon combining Equations (224) and
(225) with the dispersion relations for n and k of Section II, we easily
obtain the following temperature-dependent expressions for the real and
imaginary parts of the scattering amplitudes, (ReF) and (Im?):

Re§ - ¥ %Y /2 )¢ H-l + [ 1+ <—%—>2 F}% B ‘/%_J] (266)

- 2 r 2% 7 L
IF=rx* - ) V2] e 41+ —152-\ ® 2
m o w_ L we

(o]

where rg is the effective classical radius of electrons and is related

to the usual classical radius of electron r as:

(o]
rg = e = ( "o > r (267)
m¥c 2 m*
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where m is the rest mass of an electron.

The scattering cross-section, o_, and the optical radius, a_, are
obtained from the usual relation:

_ 2 _
Og = M8y = 4l 1§ (268)

The mass of a photon mp is computed from Equation (265) by using the

formulas for n(w) that were obtained in Section IV paragraph B. Here
again, we shall compute these quantities for various segments of the
free-electron spectrum when w < Wy . They are:

- - ) 3 >
RF~ IF~ /2 1% K—g‘”——>
e m W Q
o *0
W L
Oy ™ am Y2 cr® <———g————f> < (269)
9" 2,
2 r® A N N L
~ o "o \ W -
a, ~2 <————H ) (——g——o | (270)
n ~ Aw
p < (271)
where AO is the critical wavelength:
27cC
A, = —‘”o (272)

2

We notice that mpc is nearly the entire photon energy fw meaning

that, in this part of the spectrum, the photon may seem nearly motionless
to a Fermi electron of speed F =~10® (cm/sec), and hence there is a greater
probability of encounter, on the average, between the photon of mass
mp and the conduction electrons during the period of z on | (second).

w
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It is seen that Cq and a are independent of frequency and temperature
while we found previously that absorptivity is independent of frequency
in this part of the spectrum. Formula (281) for m_ necessitates defining
a frequency wo such that mp =0 at w = W given by:

Q v,
w2 = —2—=->0 (282)
m W
2 _ (@]
szee

Strictly speaking, Equation (281) is valid only for w smaller than
wp- This corresponds to the point where the index of refraction is
identically equal to unity and the light quantum behaves as though the
bulk of the metal is not different from vacuum. Photoelectric processes
which may be important at such a frequency have been neglected.

: 2 2
{iv) SN
. Gg 13
— /@ \2 wz_ 2 \\‘2 Qo \2 w 2213
RF ~ 2ro< o/ ( o, +< wZ-w ) -1

) 2 = a2 1
= o w N2/ Yo-u? & 8o N2 Yo Gc \f 2 1% (284)
IF ~ 2r¥ - 1+ (—5 + 1
m o\ Wo 2w = w S\ we2-ws ]

, v 5 L
o = 2%/ (r* A) <1 + & a0 \( 2 Go R (285)
s o o Wo Wo y
S YR A 5
a =~ 23/% e \2 1+ L A \ 0 Go \u (286)
S bi¢ 4 /

where A w = (W -wg).

When w >> w_, both o_ and ag approach very small but constant values

1
of the order, 2o and [ %o ?P, respectively, and vanish identically
ee ee -
when there is no Umklapp process present. This is, of course, not strictly
true when we consider the contribution of bound electrons which are im-
portant in this part of the spectrum.
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The scattering cross section cg is plotted against A qualitatively

in FIG. 16. The i-dependence of m, is also shown. The general pattern

, m o
in the A-dependence of ¢, and (ﬁjﬁ;—— may be compared with those of

absorptivity and reflectivity, respecfively, of FIG. 17.
SECTION VI. PARAMAGNETIC AND FERROMAGNETIC TRANSITION METALS
A. INTRODUCTION

The calculations presented in the preceding chapters depend on the
assumption that the energy surface is spherical. This assumption has been
shown to work well for a variety of nontransition metals. However, for
many multivalent and transition metals which have been investigated from
a theoretical point of view, the surface of the Fermi level cuts through
two or more Brillouin zones, and it does not resemble the spherical shape
we considered in Sections IV and V.

In particular, the study of ferromagnetic and paramagnetic transition
elements represents a special problem from a theoretical point of view,
since the metallic properties of these metals have a rather peculiar de-
pendence on the place of the element in the periodic table. These special
properties are exhibited in the observed temperature dependences of re-
sistivity as well as of various thermodynamic properties. Behavior of
the ferromagnetic transition metals represents an even more special case.
Although these metals have been studied rather extensively as to their
dc electrical properties based on the quantum mechanical explanations,
very little work has been done on the optical and infrared dispersion
properties. Some of the qualitative features of the optical properties
of transition metals and transition metal alloys were presented by Mott
(1936, 1935).

In the transition metals such as Pt, Pd, Ir and Ni, the s-band and
d-band overlap and the Fermi level falls in this overlapping region. The
most widely investigated metals are the triad, Pt, Pd and Ni, which come
before Cu, Ag and Au in the periodic table, and are all face-centered cubic
lattices. 1In palladium, there is about 0.55 to 0.6 electron per atom in
S5s states and the same number of holes in the 4d states. 1In pure platinum,
there is about 0.55 to 0.6 electron in 6s states and the same number of
holes in 5d states. In nickel, there is about 0.55 to 0.6 electron in
4s states and the same number of holes in 3d states. The density of
states 5(E) of 4s and 3d states of nickel is schematically illustrated in
FIGURE 45 and are compared with 4s and 3d states of copper. The large
value of energy density of d states compared with s states is qualitatively
indicated, and it will be shown that this leads to important consequences.
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Some of the important physical consequences of the presence of positive
holes in the d-band are:

(a) the ferromagnetism or high paramagnetism shown by these metals;

(b) the low electrical conductivity and anomalous behavior of resist-
ance both at high and low temperatures;

(c) the low reflection coefficient for long wavelengths; and
(d) the high electronic specific heat.

Although all the above properties are mutually related, only the first
three will enter explicitly in calculations of optical and infrared dis-
persion properties. In the language of the optical dispersion theory,
the low reflectivity for long wavelengths is the direct consequence of
the low electrical conductivity. This may be explained on the basis of
the Hagen-Rubens formula for reflectivity R that is applicable at long
wavelengths:

R=1-2 [TQ (287)
2%%

where it is seen that a low value of “de the dc conductivity, results
in a low value of reflectivity.

The low electrical conductivity is a direct consequence of the large
density of states in the d-band. The transition matrix elements that con-
tribute to resistivity or the inverse of the relaxation time, %_, con-
tains a predominantly large contribution from the s—>d transitions, since
the probability of such a transition is multiplied by the large value of
the density of states of the final d-states. 1In fact, the interband
transitions from s to d states alone account for 90 percent or more of the
conductivity because of the large value of the transition probability
compared with the other modes of transitions, s—»s, d—s, d—d.

For the particular case of the ferromagnetic nickel, three states of
electronic configuration are possible: mnamely, 3d7 4s%, 3d% 4s', and
3d*° states. The wave function for each atom will be a superposition of
the atomic wavefunctions corresponding to different electronic configura-
tions. If Yo, V1 and Y, are the wavefunctions corresponding to the three
configuration states in the order listed above, the wavefunction in an
atom of the solid nickel will be in the form:

Aglp + Apla + A Y (288)
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where |A2'2, ‘Al'2, and |A |2 are constants representing the fraction of
occurrence of each of the three configurations. The mean number of elec-
trons in the s-states is then given by:

o

1 x |a] (289)

A= 2x |As
S

which is equal to 0.55 ~ 0.6 per atom. This is also equal to the number
of positive holes in the d-band. Another consideration enters in the
study of nickel on account of the ferromagnetic properties. It is outside
the scope of the present work to discuss in detail the mechanism that
gives rise to the ferromagnetism. We are only intercsted in the way the
ferromagnetism enters in the optical and infrared dispersion of metal.

It is sufficient to note that, in the ferromagnetic nickel, the d-states
with one orientation of the clectron spin are filled, and the holes occur
only for those states of the d-band which correspond to the electron spins
oriented antiparallel to these filled states. The electrons in the s-
states, however, occur in equal mixture of the two spin states. The re-
sult of this is that there is a residual spin component equal to the mean
number of positive holes times the electron spin. Since the mean number
of holes per atom is exactly equal to the mean number of s electrons, the
residual spin per nickel atom at 0"K is:

A - A
S f, = (0.55 ~ 0.60)- (290)

The residual spin or the spontaneous magnetization decreases gradually
as temperature is increased, and the metal turns paramagnetic as tempera-
ture is increased further beyond the Curie point.

The important consequence of this property that will be of concern
in our calculations is that not all of the s-electrons are qualified to
make transitions to the empty d-states: only those s-electrons with the
spins antiparalled to the residual spin of the d-states will be able to
make transitions because of the Pauli exclusion principle. At 0°K, only
L of the s-electrons are qualified, while, at a temperature above the
Curie point, practically all of the s-electrons are qualified. This
explains the large increase in the observed resistivity of Ni above the
Curie point (Gerlach, 1932), since the damping contributed by the tran-
sitions is directly proportional to the number of d-states which are
available for the transitions.

In short, the electrical properties and hence the optical and infra-
red behavior of a ferromagnetic metal will be a function of both the

spontaneous magnetization ; and temperature.



148

If we denote the spontaneous magnetization per gram atom at any
temperature T°K and at 0°K by Z(T) and Zgo respectively, the total number
of s-electrons that are qualified to make transitions to the empty d-states
may be defined as:

o= s %= O [ 1+ Zo- z ] (291)

where n is the effective number of electrons in the s-band. This shows
immediagely that resistivity of nickel has an additional temperature
dependence coming from ¥ besides the usual temperature dependence coming
from the lattice vibrations. The explicit temperature dependence of the
factor X is available from the phenomenological theory of Weiss (1907)

at high temperature and the quantum mechanical theory of Heisenberg (1926)
at low temperatures. A detailed theoretical and phenomenological dis-
cussion on ferromagnetism and paramagnetism is offered by Van Vleck (1959) .
For the purpose of our calculation that will follow, it is sufficient

to note that the phenomenological theory of Weiss shows that (X-1) in-
creases with increasing T like

e—constant/T

at high temperatures (viz., T > 400°K), and that the theory of Heisenberg
shows that (X-1) decreases like T2/2 at low temperatures as T is decreased.
The observed and theoretical values of X and © are shown in Table XIV

at different temperatures for the ferromagnetic metals, Ni, Co, Fe and
others.

In the following part of the present section, probability of the
s-+»d transitions will be calculated by a method similar to that adopted
in Section IV for the intraband transitions. All the other modes of
transitions, d—d, s—»s, and d—»s will be neglected compared with the
s d transitions.

The weight factor multiplying the s—d transition probability is about
10 times the normal scattering probability according to the evidence pro-
vided by the data on the electronic specific heat (Wilson, 1936). This
means that neglecting all modes of transitions other than the s-band to
d-band transition will introduce an error of about 10 percent in the
calculated resistivity. Besides, the results on the intraband transitions
are satisfactorily presented by the calculations of Section IV.

Finally, it may be noted that the results that are obtained in the
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present chapter should be applicable just as well to interband transitions
in other multivalent metals. For nontransition multivalent metals, the
interband transitions do not necessarily contribute more than the intra-
band transitions. Whatever the case may be, it is useful to remember that
the total damping coefficient, including both the interband and intra-
band transitions, can be obtained simply by adding the damping coeffi -
cient that is obtained in the present chapter to that obtained in Section
IV for intraband transitions.

B. CALCULATION OF TRANSITION PROBABILITY

Because of the large effective mass of the d-electrons their contri-
bution to conductivity will be small and can be neglected compared with
that due to the s-electrons. The empty states in the d-band have a con-
siderable effect in that the s-electrons can be scattered not only into
energy levels in the s-band but also into the d-band. The large value of
the density of states in the final d states makes the s-—»d transition
probability much larger than the normal s—»s transition probability.
Further, the d—>d and d—s transition probabilities together are even
smaller than the s—»s transition probability due to large values of the
effective mass, my» of d-electrons compared with that of s-electrons,

m .

For this reason, the following calculations will include only the
s—»d transitions. Contribution to the conductivity coming from the s-—d
transitions alone explains at least 90 percent of the total conductivity
according to the evidence obtained from the data on the electronic specif-
ic heat (Wilson, 1936), 1938). 1In order to obtain the contributions of
the s—»s transition, results of Section IV may be used without necessity
of modification. Calculations of the s d transition probability involve
essentially the same theoretical approach as that adopted in Section IV.
The s d transition caused by a joint action of both the electromagnetic
field and the phonon field is again a secondorder effect, and may be

calculated from the second-order coefficient B(;) (E? representing such

a transition. There are eight different processes for the s—>d trans-
itions, four of which involved creation or annihilation of a photon in
the s-band, while the other four involved creation or annihilation of a
photon in the d-band. These eight processes are illustrated schemati-
cally in the accompanying Feynmann diagrams where (A) shows the first
four processes and (B) shows the other four processes.
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tq
A
()| (k*g9g
k k \ tq
(s)\
\
(a) (B)

In the diagrams, the solid, curved, and broken lines represent the elec-
tron, photon, and phonon, respectively.

s—»d
The coefficient B (k + g * p) may be calculated by essentially
the same method as thag adopted in Section IV. We thus obtain the
following two equations corresponding to (A) and (B):

N

s—d
* T i \2 N\ erg®d
B(2) (kgtp) (A)= + ’ﬂ‘ <2N MVE » <1/1+N m o (E.k)
(292)
« (D BRI L
E(ktp) - E(k) F B w | £ ]
S——)d(k+ = & B G AN \ eﬁng E. (k+q)
o ® ﬂl 2NME S\ VLN e S q
% (-1) _ [ 1_ei§t/fﬁ _ 1-ei§”t/ﬁ ‘\ (29%
E'(k*q) - E() ¥ E_ : & |

where the energy terms denoted as £, &', and £" in various resonance
factors are given by:
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£ :{E' (k*q#p) - E(k) gy R Eﬂ}
e’ :{E' (ktgtp) - E(k*p) + E_q} (294)

g" ={E' (ktgtp) - E'(ktp) + ﬁw}

The energy, E'(k), (with a prime) represents the energy of a d-electron
and E(k), (without a prime) represents the energy of a s-electron with
momentum, (Hk):

2
E' (k) = E -—é———k2
— 0o 2md

(295)
KZKk2

S

where EO is the energy at the upper edge of the d-band. The constant

factor ng represents the strength of the electron-phonon interaction
which is generally of the same order of magnitude as the energy of an
electron and has the same meaning as g which was used in Section IV. As
usual taking ng and also g to be independent of the energy of the elec-
tron which is interacting with a phonon is the result of assuming that the
electron-ion potential within single unit-cells is reasonably flat, or
equivalently that the radius of the atomic core is much smaller than the
size of a single unit-cell. This assumption is satisfactory for common
applications such as in the present theory. The more general electron-
phonon interaction which also includes the deformation of ions was dis~-
cussed by Bardeen (1937). A further discussion on this problem is offered
in the 1958 edition of The Theory of Metals by Wilson.

As in Section IV, we shall ignore the quantities of the order of

Ve \, and take:
Q‘—c/

E(ktp) - E(k) + fw =
(296)

E'(ktq*p) - E'(kiq) + fw ¥ Aw

Then, of all the terms in Equations (292) and (293), only those which
have ¢ in the resonance factors need be considered for our calculations,
since the others will contribute equally to both the emission and
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absorption of a photon and will thus cancel put when we calculate the net
absorption term. By combining Equations (292) and (293), and using the

relation:
k<#+ ——E\ g
. m
k _my (k*q) . d-d (297)
P E®T Ao my B (k@ E@®TE | * o
E=o
we now have:
d
S—>d 2Nz N ecg
(2)(k*ﬂ E) *r g < ZNpMVEq /‘ < vy 1+Nq i ?mswz (298)
XE. k Q + r_nﬁ_) 0y 1-e'8 A (298)
mg S mg :

P

It may be noted that the value & } of a transition metal is usually

/
very much smaller than unity {< 1 \ and such a term in Equation (298) can

be neglected without any loss in Qhe qualitative merit of our calculations.
It is retained in Equation (298), however, because this term can be im-
portant when the results are applied to nontransition multivalent metals
for which the ratio of the effective mass values is not necessarily small.

The probability for the process in which an electron in the s-band
with momentum, ki, makes a transition to the d-state with momentum, ko,
by a joint action of the electromagnetic and phonon fields is obtained
from Equation (298) upon using the usual relation:

(r) Lim s—d
( ) (_151_>k2) = Te—> 00 B(z) (kl——>k2) 2/ T (299)

where we have put k k, and ks = (ky;*gip), and r = (%), s = (%) corres-
pond to emission and absorptions of phonons and photons, respectively.
Thus, we obtain:

(r) _ 2,402
P(S) (kr__)kzg—_q i 123$§2Ehw)4 Gsér) (@ (300)

ms 2 ms 2 1
x (q° (md ) + k% <1 + a;;> ) 6(E2-El+rEg+sﬁ w)
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] 2 2
Bz = E'(ke) = E - —2 (ke)
- o om
d
where we have taken:
(E- ki) (E.q = 0
T
E- k 2 1 p2
(E k_l) E . 9 - L E
2
q
and
1 +N
(r) _ __ x4 q%ghd q
(@) = N MG N (301)
P g q

The probability for an electron initially at the state of energy, Ei,
in the s-band to make a transition to the final state of energy, E2, in
the d-band is defined as:

Py @0, - zl P (S (k) [IoF (ED)] (302)

where the factor 2 is multiplied because two electrons with opposite spins
can occupy the state of same momentum,ks, according to the Pauli exclusion
principle, and F(E2) is the Fermi function evaluated at the final state,
ES.

The summation over kp may be replaced by the summation over the phonon
momentum, g, and hence by an integral:

v J[;[‘ (dg ..... (303)
(2n) e

provided that we are careful in establishing the integral limits in the
integral over q since the density of states at the final state now contain
a factor
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instead of ¥ E . Occurrence of the factor v E -E instead of ¥ E in
the density-of-states function leads to the lower limit in the g-integral
given by:

(304)

where kd and ks are the momenta corresponding to the highest occupied

levels in the d- and s-bands, respectively, and are given by those at the
Fermi level according to the relations:

zms
= —=— E
ks < h F>

2md
d [ h 2 E, - EF)]

o[

(305)
1
2
k

]

Equation (302) is solved by removing the delta function through integra-
tion over the angular variable cos 0= E].ﬂ >. In obtaining Equation

(300), we have averaged (g.g}g over the gigmuthal angle ® with k; as the
polar axis; similarly, (E- k;) was substituted for being its value that
is obtained later on integrating over (dekl).

We now have:

202m E2 wik ) m 9o
(r) D S s ¥ (r)
(S) (El) sd = 48ﬂ2m32 (‘ﬁw)‘L (1 + mg > f q dq GSd (q) (306)

In

X L L+ (k%>7< 1+ %:—)2 ] [i-F@s - £ - sh)

where Wy is the weight factor which comes from the density of states of

P

the d-band, and is the same as that used by Wilson (1938), and where
G(r) (q) and Eq have been assumed to be independent of the angular vari-

ables. As in Section IV, we shall assume that most of the contributions
to Equation (306) come from those electrons which are in the neighborhood
and k;° in [..] in Equation (306) may be replaced by the Fermi momentum
k .

S

Now, we need to average Equation (306) over all the initial occupied
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states in the s-band using the Fermi function, F(E;), for the s-band,
and we have:

(r)
L P (E}) F(E;)
é’(r)(s———d> k1 (s) sd
(s) B £ F(E,)
ki
i e? E® D 4(K® S)2 " ) - m_s_>2 Ko b 245 1+N(q)
T as ﬂEmSkSEFuLS(ﬁw)47 m my jp q q N(q)
K&

M

Eq Y (r)
L@/ B e o
S S

where:

o —

h 8od"yg

Dsd - < N M )

P

oo z

(r) _ e 1
BF)s) (9 = \ dz 1+e” 1+e2™a
-c0

(308)

a = B(rE +shuw)
q
Ke_ = ﬁuL ’kd_ks,
K ® =,ﬁuk ; B:l—
s L s’ KT

Equation (307) involves essentially the same types of integrals as Section
IV except for the fact that the lower limit of q-integral in Equation
(307) is not necessarily equal to zero.
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The net amount of power absorbed per s-electron is defined as:

= N (r) . (r)

wsd = Z Hw {CP(_) (s——ad)> P (+) (s—d) (309)
r=(i)

If there are ES aumber of s-electrons per unit volume that are capable

of making transitions to the d-band, the power absorbed per unit volume
is simply ES times WS . As was explained previously, n_ of a ferromag-
netic metal is not equal to the total effective number nS) of s-electrons,

but is equal to —E%El times n_.

Upon combining Equation (307) with (309), and after some necessary
mathematical manipulations, we finally obtain:

(Power expenditure per unit volume)

=1 W
s S

- ® % ,m m 2 S
- n_e2 K N géh wq s d 1+ =S T oZ{(w,T)
E S P
= 2w° m e Mg M4 @

s ngSEFs MK® (310)

d

where

Hes - H_1y2 - —
2(u,T) = S [JS(H,OL) DR T e + 2Ra(,o)]

(e2u_l)
(311)
¥ - S L T+ 2Relp)
&, <+‘"d )2 s(w,a) - —(Zm_y W Jaleso Ke(p,a
m
S

; u=phuw ;3 a=pBKBO

where En and Eh are exactly the same as Jn and K.n defined in Section IV

except for the fact that we now have the lower limit of these integrals
different from zero: the bars represent such a cutoff at the lower limit.
Thus, with the definition of the cutoff:
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ay = B K By (312)
we have:
a
En (u,a) =f yndy/(eY - ety (M- e™)
M (313)

a
ih(u,ab =¥/T yndy/(ey- eu) (e“- e-y) (ey -1)
Ty

and similarly, we define the functions Eg(a) and Eg(a) such that:

(o8
= lim = n y -y
P =M T = [y a-e™)
M (314)
o
R@- MR = [ yenen? a-e)
M

The dispersion properties that result from Equations (310) and (311)
will be obtained in the following part of this section. It will be shown
that the dc damping coefficient that is obtained from Equation (310)
agrees exactly with that which was obtained in the theory of the dc con-
ductivity by Wilson (1936, 1938).

C. DAMPING COEFFICIENT AND QUANTUM CORRECTION FACTOR FOR INTERBAND
TRANSITIONS

Calculations of the damping coefficient Pep (u,x) and Fe;(a) for the

s —»d transitions are carried out in exactly the same way as in Section
IV, and therefore various arguments pertaining to the particular method
that is employed in the present theory for computing these quantities
shall not be repeated.

Upon using Equation (310) in the relation:
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- . = =
E2 o (H,a) = n wsd (315)

we obtain the following expression for the frequency- and temperature-
dependent damping coefficient, Fep(u,a);

- 2 2 - o
or® [ s A NoBa"a /™ s N/ %\ 1
Toplbsm) =—05 - = Cm L) (5 ) 32k
P s /2 msEF Ko s d
(316)

where (Hs/ns) is the ratio of the effective number of s-electrons which

are capable of making the s—»d transitions over the total effective
number of s-electrons, and for a ferromagnetic metal, may be expressed
generally in the form:

=)

X(T)
o]
1+ —— (317)
Z0

The numerical values of X(T) are available in Table XIV and Table XVI
for Ni, Fe, Co and others.  For a paramagnetic transition metal, m_ and
X(T) = 2. The same is true for a ferromagnetic metal when temperature
is well beyond the Curie temperature ® . For a ferromagnetic metal, the
quantity of Equation (317) is most important at very low temperatures at
which it is nearly equal to (3). As a result of this, a ferromagnetic
metal has a smaller resistivity at low temperatures than a paramagnetic
metal if both have the same values for other parameters.

|k

ol

Just as in Section IV, the frequency- and temperature-dependent func-
tion Z(p,a) of Equation (311) has the property:

Z(H’G‘) = Z (-U«:Ov) (318}

and is independent of frequency in the limiting cases of p << @ and

M >> a, being a slowly varying function of p for all values of w and T
except for the case of 1 << p << . It is easily shown that Z{u,a)
acquires the following forms in the two limiting cases;
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30 (@) } s p<<a, 1l (319)
S

Z(p,a) ~{Js (@) + < ) —
a4 \2
(- m>
a 2
3 2
7 I | = T M 3 x2dx . [T
om - (2 o 86
Clay (l + >
5
X[ia5él-<—aﬁ>g+2fx4dx
5 o ) x_
e
M
both of which are independent of p and hence of w, where J3 (a) and

J0(a) are given by Equatlon (314) Upon using Equation (319) in (26),
the dc damping coefficient, (a), is found as

K2 N g W m 2 /0 2
0 ) E - (6T )
E3MK@ s d «

Q

] PR >>a (320)

)
x Js (a) + ( > Js (@) (321)
(s ¢>
This agrees exactly with that calculated by Wilson (1938) when we
take { "s ) to be much smaller than unity and equate (Hs/ns) to unity.

d
For most of transition metals, m is actually much smaller than my and

. . P m
ignoring the terms containing the factor is well justified: e.g
‘ﬁr_

d
for the triad of transition metals, Ni, Pt, and Pd, we have < ) ~0 < )

and for Nb, (, > ~ 0 (10 2) Thus, it is sufficient to take Z(p,a) and

Fep (o) in the form

(TR _ -

Z(p,a) iy E—éﬁgh—E; [ Ja(p a) - HL——a-l— Jz(p,a)+2K2(p,ai> ]
(e®"-1)

(322)
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h2 N g 2 —
re, @ = ——( } ( )( ) = T:0)  (323)
ng *M K ©
@

. ‘ 7
Z(u,a)~ [ 3 “8{1' (T:i>} "2 [ S he | (324)
; ‘G’M e

According to the results of Section IV, that part of the damping which
originates in the intraband s—ss transitions may be written in the form:

h® N g2
8 SS 1
o (@ S—>5 9; = A SENCY
> msEFS MK® (325)
1 o
= RSS C(,5 JS (C(,)

Then, for a comparison of the contributions by the s — d and s— s
transitions, we have the ratio:

O(CL) IS—)d

Feg (@) ‘

- ( nS \ ( m W ‘ K \ 330(&) (326)

s—d / Jso(@)

where we have put g2 = g 2. Since we know that ks is of the same order

Esd ss
of magnitude as q,, we have @S ~ B in order of magnitude. At room tempera-

L /m,w ,
ture, the ratio is mostly due to Q d'd > while, at very low temperatures,

the ratio can take on a very large yglue. For nickel, the data on the
electronic specific heat show that | mdwé> =~ 10.
m
s
- By dividing Equation (311 by (319) and ignoring the terms containing
<;§_ we find the following as the b-factor for transition metals:
.
Mo 2
e sinh = -1
b, (p,a) = ———F [ Ja(u,a)-p Lef-12 < J2(u,a) +2 Ko(p, oo))} (327)
ep o 24
Ja (a) (e=7-1)
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This satisfies the correspondence requirement:

lim
w——>0

(u,ob)— 1 (328)

In the near infrared limit of p >> o, we have:

b (u,a) = 2 || 1+ [ -{1 -
P Ja ()

@ g

D, DISPERSION PROPERTIES OF TRANSITION METALS

6]

(329)

The results of the preceding section allow us to write down the optical
conductivity, o(u,a), in the form,

n e2

o (W) = —o— I W@+ B (330)

S

where I'(u,a) is the sum of the electron-phonon damping coefficient, I
(u,a), which is given by Equation (316), and the damping terms due ePp
to the electron-electron collisions, I' (u,a), and that due to the im-
purity scattering, 'S, Equation (330)e§ncludes only the contribution of
s-electrons; the d-electron contributions as well as the intraband
transitions are neglected. When contributions of both s- and d-electrons
need be considered, Equation (330) may be replaced by the more general
form:

nse2 nde2
— T 2 2 - 2 2
olu, ) = < m g/ Wo I+ = Fyq/W +T, )> (331)

where the electron-phonon contributions to both I' and I' , include the
intraband transitions as well as sg2d transitions. In general, it is
quite sufficient to take o(u,x) in the form of Equation (330) and ignore
the d-electron contributions as well as the intraband transitions in s-
and d-bands. Therefore, it must henceforth be remembered that whenever
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we speak of Fe (u,x) of a transition metal, we mean that the one due to
the s—»d tranBitions.

The over-all b-factor for the total damping coefficient, I' (p,a), is
again defined as:

I'el Fge F&
b(p,a) = (f‘;g—-bep(u,ab t —To bee(u,a)+ 70 > (332)

o . . . .
where bee (usa) Fge’ and FM were discussed in Section V, and:

o - <Pzp(a) + F:e(a) + P§> (333)

The optical dielectric constant, € (p,a), is obtained from Equation
(330) by using the Kramers-Kronig relation. The relevant mathematical
arguments which were applied in solving the Kramers-Kronig relation in
Section V are just as applicable to transition metals, and thus will not
be repeated here.

With the definition of the temperature-dependent quantity, E (a),
such that:

B (o) = bep (inE,GD = R, bep (ip, B,a) (334)

the optical dielectric constant is given by:

2
w
[ 1- ¢ (Had») ]: e +O(T3‘ I_.0)2
2

wo? ng®
= ( - > (335)
an s -

Thus, all relations of Section V should be applicable to transition metals
when we replace b__ and Be of Section IV by those given by Equations
(327 and (334), reSpectiveEy.

The difference between the results of Section IV on non-transition
metals and the results of the present section on transition metals are
exhibited most strongly at low temperatures and in the near infrared.
Some of these properties will be discussed.
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E. SOME LOW-TEMPERATURE AND NEAR-INFRARED PROPERTIES OF TRANSITION
METALS

For the discussion on low-temperature and near -infrared properties
of transition metals and comparison of these properties with the proper-
ties of non-transition metals, it is convenient to define a constant

Rgg given by:
> (336)

o 3 'ﬁz N g
2mS EF MK®

Then, the electron-phonon damping coefficient that was obtained in

Equation (316) can be written as:

[NC3 =

r__(u,w) = rS< <—ns >—a—l Z (u,)
ep n lod
S (337)

(1w}

n
S

n

sd s 1 =0
R < > == Jo (@ bep (T
where bep is that given by Equation (327).

First, let us investigate the low-temperature behavior of r°a).
According to Equation (337), we have:

NOEE ( } T (@ (338)

In the limit, o >> 1, this becomes:

[o] sd nS -é- GM A o
Fep ~ R m e Oyt 3 Gy + 6 Qg + 6
s

sd Hs T S
R < n_ >O < 5 > Doy = 0 (339)

d

il
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—

s 2/ s - o
><n >oeM=aM >0 (340)

S

@

_ de (
where: _ {
S e
o)
s

c

(1

ferromagnetic metal

A

paramagnetic metal

8 , . . o s
and > is of the order of unity, since ks is in general of the same

order as the Debye's cut-off value, q,- For most of transition metals,
is not equal to zero, and hence the equation (340) is to be used. For
%Hese metals, the electron-phonon damping coefficient vanishes like ~

- m . »
e G, when T is decreased to the absolute zero. The negative exponential

factor was also obtained by Wilson (1938). On the other hand, the damp-
ing contributed by the electron-electron collisions and the impurity
scattering was shown in the previous chapter to be of the form:

<Fge(‘1) +FMO> - <R ( L
ee e

where R and T _° are nearly independent of T, and R is in general
¢ ee
much smdller than Rep

>2 +T 0\ (341)

M

Therefore, for metals with different from zero, the over-all dc
damping coefficient at very low temperatures retains only that part which
is given by Equation (341l), despite the fact that the electron-phonon
part alone constitutes the most of I'°(a) at higher temperatures. This
explains the T®-dependence of resistivity of some transition metals which
has been observed by various experimenters. We summarize the above dis-
cussion by writing down I'° as:

y . 2
ro@) ~ Q R, (—é——) + rMo> : <§M>§ é) (342)

The same was found to be true even for a noble metal due to the rapid
decrease, ~ T° of I' © (o) with decrease in temperature, although not as

. . . ep
rapid as in Equation® (340).

Whether there is a transition metal with Cy = 0 is a question that
is yet to be answered. For such a metal, the s d
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transitions at the Fermi level can take place without a finite mometum
transfer implying that phonons with the average energy of the order of

~ (KT) are capable of stimulating the s—>d transitions even at a very
low temperature. The following discussion based on a rather qualitative
description of the properties of the s- and d-bands suggests that, out
of all transition metals and likewise of all multivalent metals for which
interband transitions are important, there can exist a metal with ay = O,
if the electrons in the outer band (s- band) are neither more nor less

in number than what is required to completely close the empty states of
the inner band (d- band) that is involved in the interband transitions.
Three transition metals which do satisfy such a condition are the triad,

Ni, Pe, and Py. For nickel, the three possible configurations are (3d

432), (3d9 431), and (3d10 450). For platinum, they are the configura-

tions,(5d8 632), Sd9 6sl), and (5d10 6s0

configurations, (4d9 531) and 4dlo 580). In all three metals, the s-
electrons plus the d-electrons amount to 10 electrons which can exactly
close the d-band. Further, it is known that all three metals have an
approximately 0.6 electron per atom in the s-band and the same number
of holes in the d-band. That these metals can have oy = 0 and hence

). For palladium, they are the

may be shown by computing the total number of empty states in the d-band
and the total number of s-electrons from the density-of-states functions
of the two bands. At very low temperature, the Fermi function, (F(E),
is nearly equal to unity, and we have:

E E
F ° o

n =\jh o4 (E) dE n, = kjh o4 (E) dE (343)
0 EF

where n’ is the number of empty states in the d-band and the density-of-
states %unctions, o (E) and o4 (E), are given by:

m 3/2
5, (&) = B (—hz—> =

m
5, (E) = (hg >3/2 /& - E (344)

Using these in Equation (343), we obtain:
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1 " 2 ms E \‘3/2 = K;//gﬂz
s 3= h= F/

/s

o 1 2 md \3/2 = Ki/ 3r® (345)
"4 T T3 ( nZ (Eom Fp) )

Therefore, we find that kdzks for those metals for which n is identi-

cally equal to ng.

n

Although the above result may not lead us to a definite conclusion,
due to the use of the simplified forms of p o4, it does permit us to
suggest that, if there is any metal which has p,, = 0, the triad of trans-
ition metals N,, P_, and P,, are the most likely ones. 1In fact, accord-
ing to the obssrvations by MacDonald and Mendelssohn (1950), the low-
temperature resistivity of platinum has been interpreted as having a T®-
dependence on temperature, which, if real, may be attributed to T 9 (q).
On the other hand, if platinum has %y = 0 so that equation (339) 1is
applicable, the low-temperature resistivity should have both T®- and T®-
dependence on temperature coming from I;g and I' 9, respectively. The
total damping coefficient will then be given by:

d T 3 - T 2
r° ~6 R (= — o
by (@) ~6 R (O> +Ree(@> + Ty (346)

where the first term is not necessarily much smaller than the rest unless

T is very near the absolute zero: e.g. at <%%— = 1/20, we have:

~ -3
Fep Rep 10

Fee ™ Ree 10 ° (347)

and, since Re is generally larger than R__ by a factor of 10 or more,
%0 is not unimportant even at a temperature as low as 10 ~ 20°K.

It is not difficult to see that, even if the low-temperature resis-
tivity exhibits the T®- term, a clear distinction between T°- & T2- terms
is not an easy task at low temperatures, and it is thus very possible
that this term has been confused with the T®- term in the past measure-
ments.

Let us investigate the low temperature properties of the quantum-
corrected damping coefficient Fe (pn,a) in the near infrared, i.e.
W >> o >> 1. The low temperaturg properties of Pep (r, ) in the spectral
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ranges, p << a, will be left to the future chapter dealing with the
absorption at very low temperatures.

We saw in the previous chapters that, unlike the dc damping coeffi -
cient, © (a), the quantum-corrected damping coefficient maintains a
.eE . . o] .
relativély large value in the near infrared even at O°K. It will be shown
that a similar quality is also found in transition metals, and that this
is true for all transition metals regardless of whether ay vanishes or
not provided that oy is of a much smaller order of magnitude than «o.

At very low temperatures, the b-factor for the near infrared spectrum
reduces to:

- 1 s ;:iﬂ_ 3 7
bep (u,a) ««Sﬁg?a) o [ 1 - <~Q ‘> J (348)

When we use this in Equation (337), we obtain:
T 2 > 7
sd M
o = (5, 34 [ ()
ep ng /o o) / |

=~ LR : F. M,

|

2

D

~ i R . Pl oM (349)

which is independent of both w and T, where we have taken 6 << ©®. Thus,
unlike I' © (a), the negative exponential factor, e M, cancels out and
the electfon-phonon scattering makes large contribution even at very low
temperatures. This implies further that the contributions to the damp-
ing by the electron-electron collisions and impurity scattering will be
important at very low temperatures in the near infrared only if they are
important at higher temperatures. When these two processes need be con-
sidered, we use the formula:

~ _ o ~ fo)

9, (o) = Fep bep t e (@ + Ty
> 1 sd 1 )
== x (0) R+ Ree =z + Ty

a>>1 (350)



168

while 50 (a), which appears in ¢ (u,a), becomes

- T o
R (c) ~Ree -4 * Iy

= PMO : T = 0K (351)

In Equation (350),§§o has a weak T®- dependence while in Equation
(351), ﬁb(a) has a relatively strong T2 -dependence on temperature,
since, in general, Re >> Re = L[O. As a specific example, let us
investigate the near Pnfrar&d absorptivity at very low temperature.
According to Section V, the bulk absorptivity, AB’ is given by:

m ~
~ /S .G
AB ~ ;n—s? o a (352)

where:

1024 62
fee = 1.49 < R (353)
ce

and Qo is given by Equation (350). 1In general, Ryg > Ree’ and when
~ d

. . . ~ S
this is true, & is also much larger than w_so that @ G =~ I X (0) R
ee o 0O 0 6
for a reasonably pure sample. Thus the total near infrared absorptivity,
A, of a transition metal is:

~ix (@ Rsd o+ 2 W (354)

w C
o

where the second term is the absorption due to the anomalous skin effect
and Ve = 10°® ~ 1072 ) C. The numerical value of de can be determined
from the room temperature value of Ié; (a) since the complete temperature=
dependence is specified in Equation (238), and I' © (q) is easily found
from the optical data and also from dc electric mPasurements.

The temperature-dependence characteristics that have been discussed



TABLE IX. NUMERICAL VALUES OF J. ( &)

é ;_%r J; (a)
0 124. 43
0.05 124, 42
0.076923 123. 14
0.1 116. 38
0.125 101. 48
0. 16667 70. 873
0.2 50. 263
0. 25 29, 488
0.33333 12.771
0.5 3, 2293
0. 66667 1.1199
0.83333 0. 47907
1 0. 23662
1. 25 0. 098845
1.52 0. 0451

169



170

TABLE X. TEMPERATURE-DEPENDENCE OF DAMPENG COEFFICIENT IN GOLD

(8= 175°K )

r o o y 7 00720

T ep (T) / Tep (273°) T'ery 7 2 (273%
(OK) calculated observed
273 1 1

87.43 0. 2645 0. 2551

78.86 0. 2276 0. 2187

57.8 0. 1356 0.1314

20. 4 0. 00604 0.0058

18.9 0.00346 0.0035

14,3 0.00117 0.00137

12,1 0. 00051 0. 00048

11,1 0. 00033 0. 00030

4, 2 3x107° 3x10°°
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TABLE XII
F C, N, j =% (theory)

EOK) -ié:) 3 X (T) @;— ) $ X (D) @-;) 3 X (D)
Bc

0 1 0. 500 1 0. 500 1 0. 500
0.1 0.996 | 0.502 0.996%| 0,502 1.000 | 0.500
0.2 0.99 | 0,505 0.99 0. 505 1.000 | 0, 500
0.3 0.975| 0.512 0. 98 0.510 0.997 | 0.501
0.4 0.95 {0.525 0. 96 0.520 0.983 | 0,508
0.5 0.93 |0.535 0. 94 0.530 0.958 | 0.521
0.6 0.90 | 0.550 0. 90 0. 550 0.907 | 0.546
0.7 0.85 |0.575 0.83 0. 585 0.829 | 0,585
0.8 0.77 | 0.615 0.73 0. 635 0.710 | 0. 645
0.85 0.70 |0.8650 0. 66 0. 670 0.630 | 0,685
0.9 0.6l |0.695 0. 56 0.720 0.525 | 0.737
0. 95 0.46 |0.770 0. 40 0. 800 0.380 | 0.810
1.00 0 1,000 0 1,000 0 1,000

* For Ni only

Computed from the Am., Inst. Phys,

Hdb,
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Elements

Fe

Fo

Ni

Gd

Dy

TABLE XIV

Curie Point 5 5

€& (°C) ° (293°K)
770 221.9 218.0
1131 162, 5 161
358 57. 50 54,39
16 253. 5 0
-168 =---- 0

175

0. 509

0. 505

0.527

1. 000

1.00(0)
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Figure 21. Gold (~ 300°K) n, k versus A
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20
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(1959)
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Figure 22. Gold (~ 300°K) n versus A%
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Figure 24. Copper (~ 300°K) n versus A2
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Figure 28. Aluminun (295°K) n, k versus X
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here are to be used in various dispersion formulas that are given in
Section V in applying the present theory to transition metals. It must

be kept in mind that some transition metals exhibit resonances at relatively
long wavelengths compared with noble metals, and when this happens the
resonance contribution must be substracted out of the dispersion curves,

by use of the Kramers-Kronig relation or by other means, before the theory
is applied. A method of substracting the contribution of the bound elec-
trons to the infrared dispersion was illustrated in Section III where we
used the Kramers-Kronig relation. When the resonance band is narrow and
clearly distinguishable, separation of the free-electron part of dispersion
becomes a trivial matter.

SECTION VII, THEORY APPLIED TO OPTICAL DATA

A, CALCULATION OF MICROSCOPIC PARAMETERS

The microscopic parameters that define the optical dispersion proper-
ties may be calculated from the best-fit theoretical curves of either the
optical constants, (n,k) or (c,¢). 1In general, it is much simpler to use
the data on (c,c) rather than (n,k) since the general formulas for the
former are less complicated than the latter. If the optical data are
available in the spectral range,szi s Qg << w? < wi, which, for many

metals, corresponds to lp < A< 10 y, it is convenient to use the best-
fit theoretical curves of (n,k). In this part of the spectrum, the theo-
retical formula for k is exactly the same as that given by the classical
Drude theory while the formula for n can differ substantially from the
classical formula namely:

k;Q:O\/:K;) (355)

o]
~ o éo
- & )
n= 3 GC
W
woQ W 1
_1/2 [ 02 o_ 0
ee
~ y (356)
Q:(lo +PO+FO\,
o ep ep ee M
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It is seen that k describes a straight line when it is plotted against

A, while n describes a straight line when it is plotted against A%. The
critical frequency, w_, is obtained from Equatioqv(BSS) and when this is
used in Equation (356), the numerical values of § and Q follow immedi-

ately. The value of the electron-electron dampingocoeffigient,l“o , is
! . ee
obtained from Qee when we use the relation:
£ 2 o ﬁﬁe 2
Q :Q———-p— r ( R
ee 2n ee 21 ee

B = 1/KT (357)
= 1/K&
EN /K

where Ree is a constant which is independent of w and T. The values of
FZP’ and hence ReP can be determined from Equation (355) and (356) only
when we neglect Fﬁ
for metals which are substantially free of impurities, provided that the
temperature is not too low. The method of determing the "Restwiderstand"
term,I‘M, from the low-temperature optical data will be explained in a
later part of this section.

compared with erand sz. This procedure is valid

Once the values of wo, Rep > and Rge are determined, we can predict
the values of (n,k) and other dispersion quantities at any other tempera-
ture and frequency.

It is important to note that, in fitting Equation (355) to the corre-
sponding experimental curve, the extrapolated straight line must pass
through the origin at A = O, and that, when Equation (356) is plotted
against 2%, the non-zero value of n defined by the intersection of the
straight line at A = O is entirely due to the Umklapp processes which
give rise to a non-zero contribution of the electron-electron collisions.

The remarkable qualities of Equations (355) and (356) are clearly
demonstrated in FIGURES 20 to 23 for gold and copper, and in FIGURES 27
to 30 for the multivalent aluminum.

For many metals, it is not easy to identify the portion of the spectrum
where Equations (355) and (356) are applicable, and the general equations
of Section V need be used. 1In this case, it is more convenient to obtain
the best-fit theoretical curves of (5,e) than of (n,k) using the equations:
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c = Q ¢o (w2 + 32)
4 o o

(358)
{1 -¢} = w2 (W% + Qi )

where (o, and &y are independent of w.

The best-fit theoretical curves of ¢ and (l-¢} are shown in FIGURE
19, and FIGURES 24 to 26, and FIGURES 31 to 36 for 10 different metals
including the noble, multivalent, and transition metals. 1In particular,
the multivalent metal, aluminum, is examined at two different temperatures,
78° K and 295° K.

Table XV shows the numerical values of various microscopic parameters
that are calculated from FIGURES 19 to 36. These parameters are suffi-
cient to enable us to calculate the dc electric properties and the disper-
sion properties at different spectral and temperature ranges.

The dc electrical conductivity, o> is calculated from the formulas:

we
o o 1
V‘O - T FO
ro = Feg i Fez + FMO (359)

where FMO may be ignored at ordinary temperature. The theoretical and

measured values of o, are shown in Table XIII for a variety of metals.
For most of the metals that are examined, the theoretically calculated
values agree well with the electrically measured values. Note, in par-
ticular, that the values for Ni and Al have been improved considerably
from the old values of Table VI. 1In Table XIII, some of the measured
values of -, are not obtained from the samples on which the optical data
are available. For an accurate comparison between the calculated and
measured values of -y, both the optical and electrical measurements must
be made on the same sample, since,as was explained in Section I1I, the
optical and electric properties vary depending on the manner in which
the metallic surface is prepared. For instance, most of the available
optical data are obtained from vacuum evaporated surfaces whicle the
handbook values of o, are for bulk samples. Beattie and Conn (1955) ob-
tained the optical data for several metals, each with several different
surface preparations. The variation in the values of the electrical and
optical properties among differently prepared metal surfaces was quite
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substantial.
B. CALCULATION OF ABSORPTIVITY

With the help of the microscopic parameters that are given in Table
XV, the absorptivity is calculated from the formula:

CR0\2 CQ o\ -
o2 .9 [/ o ___<37 2o . Q Q
AB = o Q, Go [ 1 3 <\ - > L > + ...} T w >0 > o

v
3 F

As =7 T (360)
A = AB + AS

where AS is the absorptivity due to the diffuse surface scattering (Dingle,
1953) . The skin absorption is important when the mean free path given

by:

L= v, T (361)

is much larger than the skin depth than the skin depth 68, whicg was
given in Section III, where T unlike the dc relaxation time TR , is
now given by:

1 -1 4T % x Q.E - 1> (362)
— ep ep

According to the original theory of the anomalous skin effect, the dc
relaxation time, TE , was used in Equation (361) so that, at low tempera-

tures, 4 can be substantially larger than 5y due to the rapid decrease
I'% with decrease in temperature.

According to the present theory, however, TR does not increase so

fast as might have been expected from the theory of electric conduction,

since a rapid increase of gep, according to ~ (}@_ s 1 , completely

T Jo
5
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counteracts the rapid decrease of Feo, until TR reaches the constant
low-temperature value: P

N/, o . Q‘O
_1"&(18 Rep+FM>. T =~ 0°K (363)

This is to be compared with:

1 =T : T =~ 0°K (364)

which results when Fepo is used in place of r°. As the result of this,

the absorption due to the anomalous skin effects is not so .significant

in the present theory as was suggested in the original theories of Reuter
and Sondheimer (1948) and Dingle (1953). For transition metals and also

for multivalent metals for which interband transitions are predominant,

the relation in Equation (363) is replaced by:

Rs——ad
1 = Q ep + FMO\ (365)
] 6 g

The constant, Rep’ can be obtained from the known values of Feg upon

using the relation:

o o
r = R 1 J. (o) (366)

for nontransition metals, and the relation:

o _ sd 1 0
Fep = Rep —as Jd (o) (367)

for transition metals, where the functions Jg and J? are available in
the appendix in calculable forms: the numerical values of Jg (o) are
computed in Tables XI and XIIL. Since Rep is usually Ll ~ 1 times as

(o} PR PR
large as Fep at room temperature, TR for both transition and nontransition

metals at very low temperatures and in the near infrared is given by:

T, ~ (10 ~ 10 x T; (300°K) (368)



213

which implies that the mean free path, 1, increases by a factor of 10 ~
100 when T is lowered from room temperature to the absolute zero. This
is in mark contrast to the low-temperature electrical properties and
also to the existing theories of optical dispersion.

The absorptivity values that are computed from (360) are presented
in Figures 39 to 43 and are compared with the experimental curves for the
liquid metals, Hg and Ga, and for the transition metals, Pt, Ti, and Ir.
The contributions by the Umklapp processes are indicated in FIGURES 40
to 43. One glance at these curves is sufficient to show that the transi-
tion metals with predominantly interband transitions exhibit a markedly
greater contributions of the Umklapp processes than other metals. Table
VII shows the theoretical values of the low-temperature (4.2°K) and
near-infrared (1 ~ 2u) absorptivity of eleven different metals. The
theoretical values for Cu and Ag are in agreement with the experimental
alues of Biondi (1956) within ~ 2 percent. Unfortunately, the experi-
mental values are as yet unavailable on other metals, and no further
comparison is possible. The relative importance of the bulk absorption
as compared with the skin absorption is represented by computing the per

cent value of < AB > = (} - As . It is seen that for all the metals
A A

that are studied, the bulk absorption ranges from 20 percent for Ag to
nearly 100 percent of the total absorption. In general, the bulk absorp-
tion is relatively more pronounced in multivalent and transition metals
than in noble metals. It is hardly necessary to mention that, according
to the classical theory, there should be almost'no bulk contribution to
the low-temperature absorption, and that the remarkable features demon-
strated in Table II are entirely the consequence of the quantum correction
factor, bep’ of the present theory.

C. CALCULATIONS OF DISPERSION PROPERTIES AT DIFFERENT TEMPERATURES

We have already demonstrated how the microscopic parameters that are
computed from the room temperature optical data can be used to compute
absorptivity at very low temperatures. We may likewise calculate and hence
predict the values of any dispersion property at different temperatures
when the values of the fundamental microscopic parameters are available
from the optical data at a particular temperature.

Before we proceed with numerical applications, we need to establish
the validity of the T-dependence that is formulated in the present theory.
The temperature-dependence of I' O (a) is well established and has been
popularly used in the past. Thg%efore, we need to concern ourselves only
with the T-dependence of the electron-phonon damping coefficient, Feg (o) s
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and the quantum-factor, bep (o,1). We explained previously that the
T-dependence of I' .9 (a) of the present theory is entirely consistent with
the T-dependence of the well-known Gruneisen formula and also with that
which is derived in Wilson's theory of electric conduction in metals, and
that Gruneisen's formula is in excellent agreement with the observed

heat capacity data: e.g., see FIGURE 15a and b. Although this enables

us to conclude that our formula for Feo (o) is valid, we have yet to estab-
lish the validity of the T-dependence gep (a,u), or equivalently of

bep () -

For this purpose, we shall use the optical data on aluminum which
are obtained at two widely separated temperatures, 78°K and 295°K, by
Golovashkinetal (1960). We saw previously that the theoretical curves
for n,k, o, and (l-¢) at the two temperatures agree well with the corre-
sponding experimental curves,and that the calculated value of g, at 295°K
also agrees with the electrically measured value. Table XV shows further
that the values of the temperature-independent parameters which are cal-
culated from the two separate data agree with each other within ~ 5 per-
cent. Therefore, we only need to show that the value of Peg (78°K) ,
which is obtained from the data at 78°K by using b,y (78°K) = (5.94),
reproduces successfully the value of Feo (295°K) which is obtained inde-
pendently from the optical data at 295°K using be (295°K) = 1.22. From
the optical data, we have: P

Feg (78°K) = 1.41 x 10*® sec *

peg (295°K) = 1.12 x 10** sec ! (369)

each of which has been obtained independently with @ = 375°K. On the
other hand, Table X gives us:

J2 (295°K) = 0.5

72 (78°K) = 50

so that:

I

o o)
r o (78°K) « 295 s 7 JE (295 K)
ep 78 J2 (78°K)

= 1.17 x 10*% sec *

o .
Fep (295°K)
(370)
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Comparing this with the value, 1.12x10%* sec -1 of Equation (369), we
find that the two values agree within 5 percent. Since use of B ()
was essential in obtaining the values of Equation (369) optical Sgta,

the good agreement between Equations (369) and (370) automatically estab-
lishes the validity of the temperature-dependence of bep

Now that we have verified experimentally the temperature-dependence
of the dispersion formulas, we are ready to predict various dispersion
properties at any arbitrary temperature. As an illustration, we shall
calculate the near infrared absorptivity and the optical constants, (n,k),
of aluminum at very low temperatures (< 10°K), 375°K, 470°K, and 570°K
in addition to the values at 78°K and 295°K which are already available
from the optical data of Golovashkin et al (1960).

In the spectral range defined by:

0.8 < X< 3.5

we use the formula:

~ 2 1 o ~ 1 W
= [ Rep =— J= (o) bep () + Ree - + (371)

- w - 2
_ 1 ¢} (Y] !
nEos = [ o | (372)

"
£l
Y
[N RS
@)
~_
M
-
lox]

where Equation (371) is to be used for AB, and K is nearly independent

. W
of temperature and is = ( o

w

Upon using the numerical values of various parameters given in Table
XV and X, we obtain:

R = 7.0 x 102 sec
ee
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R - 7.7 x 10-% sec *
ep

1.34 x 10'€ sec *

50
1}

ee

and thus Equation (371) becomes:

T
li

- 10 .o ~ 3.51 x 10'2}_
-{(0.0103) @ by, @+ X (373)

The values of A = (AB+AS) are plotted at the temperatures, T < 10°K,

78 K, 295 K 375 K, 470’K, and 570 K in FIGURES 37 and 38. The values of
n are plotted in FIGURE 39. The absorptivity describes a straight line
when plotted against 1 \ while n describes a straight line as a funct-

—=/

ion of 2. 1In obtaining the values of A, we have used AS:0.004 as the
skin absorptivity.

It should be noted that the Umklapp processes were completely absent,
the second term of Equation (373) would vanish and AB would be independent

of . The curves of FIGURE 37 are then replaced by a family of horizontal
lines, while the straight lines of FIGURE 39 for n should all pass through
the origin.

Finally, it may be said that calculations similar to that which has
been done on aluminum can be made on any other metal for which optical
data are available. This applies to all the metals that have been in-
vestigated in the present chapter except for solid bismuth. The optical
data on bismuth show extremely anomalous behavior, as shown by the curves
of ¢ and (1l-¢) in FIGURE 44. Whether the anomaly is due to oxides or
due to some peculiar properties of the lattice is yet to be determined.
While both the present and all the existing theories completely fail to
explain the peculiar dispersion properties of solid bismuth that are ob-
served by Markov and Khaikin (1960), Table-VIII shows that the liquid
bismuth is explained even by the classical Drude theory (Kent, 1919),
and hence by the present theory also.

D. DETERMINATION OF IMPURITY CONTRIBUTIONS

Unlike the dc electrical properties, the optical dispersion properties
are affected very little by the presence of a small amount of impurities
(i.e.,~10"% or less in concentration), except at the far infrared and low
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temperatures. It is well known that the impurity contributions give rise
to the finite residual resistance important at very low temperatures.

The pronounced effect of the impurity scattering at very low temperature
is attributed to the fact that the damping coefficients, I' “(a) and T o,

vanish with ~ T° (or ~ T® for transition metals) and ~T2 rgbpectlvely?

when T is decreased to the neighborhood of the absolute zero, while F“O,

being independent of temperature, maintains its constant value even at

0°K.

In the present theory, however, the damping coefficients, I 9 and
I‘g, appear multiplied by the respective quantum correction fact rs, bep

(w,T) and b (), which, at very low temperatures and in the near infra-
red, increase exactly as fast as the rate at which I © and 1T © decrease
with decrease in T. As a result, the over-all damplng coefflglent

(.:,T), manages to maintain a constant but relatively large value even

at 0°K. For this reason, it will be senseless to attempt to determine
the value of 'O from a near infrared optical data, unless the concen-
tration of impurities is sufficiently large as to make I © comparable
with R or R . It was shown in Section V that, unlLke 7, (l-c¢) depends
on theeS-indeggndent damping 2 such that:

=

W
].-k:_ ~ 1‘2* - O 2 (374)
0= (T

at very low temperatures. Unless the wavelength is very long, however,
this is not going to improve the situation since in most of the infrared
and near infrared regions of spectrum, Equation (374) is replaced by -

B

//“

w

Therefore, it is quite clear that any attempt to determine I’ 9 can
be made only when the optical data are available in the far infrared
region, 1 << g h w < «. In this case, Equation (374) is useful, provided
that w is not much larger than FMO.

At very low temperatures (T < 10°K) and in the far infrared, the
optical quantity which is measured with relative ease is the absorptivity,
A, or the reflectivity, R =(1-A). The value of r'° can then be determined
from the formulas that are given in Section VIIIL. For many metals, the
values of ' ©, I © and w_ are available from the room temperature data

) ee e o . .
with an accuracy Bf 10 percent or less, so that if A  is measured up to
< 10 percent, the value of I O can be determined up to < 10 percent. The
optical estimation of F%J can be useful when a direct electrical measure-
ment is difficult. :

When the value of I“MO is available, the impurity concentration N
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can be cstimated from the complete expression for FMO (Gurzhi, 1959) or
qualitatively from:

(e}

- ; TM >
O T (375)

which gives us the order-of-magnitude estimation, where (pF TM) is the
mean free path of the electron-impurity collisions.

SECTION VITII. BULK ABSORPTION AT VERY LOW TEMPERATURES

A, NORMAL METALS AT VERY LOW TEMPERATURES

It was shown in the preceding chapters that the bulk absorptivity,
A, of a normal metal (i.e., non-superconducting) retains a finite non-
zero value even at O°K in the spectral range given by p >> o >> 1, and
vanishes at 0 K, for a pure metal in the limit w—e0. It was also shown
that the bulk absorptivity at O K, which we shall call the '"zero-point
bulk absorptivity," in the near infrared is independent of .. aside from
the Umklapp term.

Specifically, we obtained the following formulas for the bulk absorp-
tivity in the high frequency part of the infrared:

2 4 .
2 f 9 /9 37 /8o |
A = - QOG_Ll— 2 k'\ + 3 K =

B N i
Pw > (> o) (376)
and:
A - 2= 3 ¢ W3S (L>> ) (377)
B wy o - Qg B &
where:
b
~°> -7 © Nep(u,a)> ¢ ro ro
Qo ep b (o) ee M
2
GC = K L+ gzw \
o Qeef/
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G = (\1 R (378)
C Q 2 /
o ee
and (G_ - 1) and (Eﬁ - 1) can differ from zero only when the Umklapp

processes are present.

It is the purpose of the present work to compute the absorptivity,
AB’ at very low temperatures in the spectral ranges defined by:

(condition 1) a >>u > 1

(condition ii) a >> o, p~ 1 (379)

both of which are in the far infrared. At T = 0°K, the condition (i)
applies for practically all frequency values of infrared, and the calcula-
ted value of AB would then represent the far infrared zero-point bulk
absorptivity.

It was explained in Section V that the generalized Hagen-Rubens
formula:

r° 1
A = 2 —~ [ —- (b -1 12 (380)
B Co L ro ep I

applies in the far infrared when the temperature is not too low. We re-
call that Equation (380) was obtained by taking w? <<£2§, Q;-

At very low temperatures, however, «© may not be necessarily smaller

than ¢ and Q2 in the far infrared, since { being independent of w
(o) O > 0, g p 3

decrease in T and 2% likewise may have a small value if the quantum
correction factor, ge (u, @), does not counteract sufficiently the rapid
decrease of Feg (o) Twith decrease in T.

Therefore, it is quite clearly the primary task of the present work
to investigate the w-dependence of be (u,a) in the spectral ranges of
P o}
M
to the values of w in these spectral ranges. We shall first investigate
the .i-dependence of bep (u,a) for w>>1 and T = 0°K. We shall, for the

Equation (379) and also to specify the order of magnitude of T relative
sake of generality, calculate it for both u > o and u < a.

Upon using various formulas for Jn (u,00) and K (u,a) in the results
n

of Sections IV, V, and VI, we obtain the following expressions for bep
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(u,a2) for both transition and nontransition metals, p,a:

e 5« o
p<a
(fj
~ —E o
b > (b, 60 Js (@) (382)

for nontransition metals, and p > a:

ool 3 o o
p< o
3
by, () = - Ja (@) (384)

for transition metals, where, for the sake of convenience, we have taken
A to be zero.

Thus, the electron-phonon damping coefficient of nontransition metals
is given by:

7?

Fep (1) < %g‘—j—) LS o (385)

\S
~ <5‘” : p<ao (386)

For transition metals with o = Z 0, we have:

1

() -2 £ ) : u>a (387)

ep

2

= (0
< > tp <o (388)
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It must be remembered that, for a ferromagnetic metal, Equations
(387) and (388) must be multiplied by 1/2 on the R.H.S. as the correction
for the residual magnetization. Equations (383), (384), (387), and (388)
will also apply to those transition metals which have Cly > 0 provided that

g is sufficiently smaller than «. In this case, Equations (384) and

(388) are multiplied by (1l-

d
) so that es (u,a) has non-zero values
for Hw > K@E only. P

For both types of metals, the electron-electron damping coefficient
is given by:

2
Fee (50) ~ 702 Ry, (—%) (389)

In order to write down the formulas for the bulk absorptivity, we
need to compare the magnitudes of w® with 2%, Qg : i.e., to find out which
of the Equations (376) and (380) is applicagle.

At T £ 10°K, p = 1 corresponds to the values of w which is of the

order of 10%2 sec ! We are therefore interested in the spectral range
given by:
10'2 S w << —2= 2 10%° ~ 101 sec™ (390)

d
It was shown in preceding sections that R (and R® ), R and I'_° (for
ep ep ee M

a "pure' metal) have typical values of the order 1013 ~ 104, 10® ~ 10%°,
and < 1029, respectively. The Debye temperature is generally of the
order of several hundered °K corresponding to w of 10%° ~ 10 14 gec=t

Therefore, for w ~ 10*% sec™ - and @ = 100°K, we have:

w2 >> gbz (391)

The same is then true for 902 since it contains no w-dependence and:

Qo ~ ( F§ + FeZ) << w = 10%2 sec™t (392)

This implies that Equation (376) is to be used for evaluating the absorp-
tivity in the spectral range of w > 10'% sec™ ! and T < 10°K.
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Thus, we have the following formulas for the bulk absorptivity of the
noble metals and the transition metals,respectively:

R ,, : >
2 ep o3 Koy 1 A o
AB N wy ‘{ 10 ! 6 Hw > * g™ Ree < K® * FM }'

(393)
n<a
A =~ 2 ReEﬁ CKw P + 1 Ko ¥ . ro° (394)
B W 60 KA _‘ Qﬂz Q.K@ M
for nontranstion metals, and:
B>
sd 2 ) R 3 K8 1 [ A\ o
AB Qwo {2 6 <l 4ﬁw>+4ﬁ2 Ree\K{\’_‘_FM}
(395)
p < a
sd 2 «0) R%Y /A0 1 F\2
~ - ; o

for transition metals, where X(0)= 1 for ferromagnetic metals and X(0)=2
for paramagnetic metals.

Although Re is generally smaller than R__ by a large factor, contri-
butions of the electron-electron collisions €8 Equations (393) ~ (396)
can be substantially large compared with the electron-phonon term because

of the smaller power of 'gg/ in the electron-electron term. This is

even more true if Equations (395) and (396), is very large. The first
) g

terms inside the braces of Equations (395) and (396) must be equated to
zero for Aw < Kop when 8 is not zero so that the only w-dependence appears
in the Umklapp term.

Now let us investigate the case of p < 1 and:
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w = (ﬁ\ < 10%2 secl (397)

This spectral range is of interest when one wishes to compare the absorp-
tion of a normal metal since the superconducting energy gap is generally
of the order of several °K in temperature and thus, w < 10*2 secT! For

w ~ 101T sec™!, we will, in general, have 4%%\ < 1072 for @ > 100°K.

This implies that we will have T O as the most dominant term in both

o and { when the metal is not completely free of impurities. However,
since we saw previously that .0 < 10'" secT® for the most of the so-
called '"pure'" metals samples, we still have:

Q © 06\ 1 (398)
<‘w > ’ ( w W‘ S 10

so that Equation (376) is again applicable.

Therefore, we shall henceforth consider Equation (376) as the general
formula for bulk absorptivity which is applicable in the far infrared at
very low temperatures regardless of whether p >> 1 or p = 1, unless a
metal has an exceptionally large value of I ©. When the sample has a
large I'2, > 102 sec”?!, say, the Hagen-Rubens formula (Equation 380) should
be used with I'°(a) equated to FFF'

For ¢ >> p and p < 1, we have the following formulas for Jn(u,@) and
Ko (n,a)

Jn (,a) z—z—— v JO (o) + “:3 —n-1) J° () +...
ezu_l n 3! n-=z

2 o s _n(n-1) o
K.n (p,) alvs-recy ﬂ; K.n () + p o Kn_2 (o) + | (399)

where the first terms inside ﬂ;.] are the largest terms. These formulas
are to be used in evaluating bep (p,a):

(VRN H_1y2
& _sinhp -
bep (1,0) = e s;nh HTJ5 (L,0) - p e"-1)" [ J, + 2 K4W

(eZH_ l)

for nontransition metals, and:
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Mo H 2 7

hy i (e -1) - =
bep (50 = < S;n I[Jq () - p =z L Jz (p,2) + 2 K (u,00) |
N J

(401)

for transition metals. Then, it is a trivial matter to write down the
bulk absorptivity since we only need to replace be of Equations (394)
~ (396) by (400) and (401) in the electron-phonon term.

Finally, it may be reminded that the values of the parameters Rep,
Ree, and RZi which are required for a numerical estimation of Equations

(394) ~ (396) are to be obtained from the optical data taken at higher
temperatures and alternatively from the dc electrical data. The same
applies to the other parameters.

B. BULK ABSORPTION BY SUPERCONDUCTORS

Compared with what are available on normal metals, very little experi-
mental data are available on the optical and infrared absorption in super-
conductors. Some of the latest measurements are those of Biondi and
Gar funkel (1959) and Richards and Tinkham (1960). These measurements are
designed to determine the superconducting energy gap from the shape of
the observed absorption curves. Specifically, these experiments include
measuring the absorption of the external electromagnetic wave in a super-
conductor relative to that in a normal metal, and the results are embodied
in the curves showing the ratio:

r =1 (402)

where A and A are the absorptivities, at a given frequency and tempera-
ture, of the sﬁpercondueting and normal metal, respectively. The normal
state of metal is accomplished by applying a magnetic field parallel to

the surface which is strong enough to reduce the gap to zero. The results
are equivalently expressed in terms of the power absorbed, P_ and P_, in-
stead of the absorptivities, A_and An. In the plot of rsnsversusnw,

for instance, the energy gap is determined by locating the frequency w
where rg, starts to decrease abruptly: that is, the head of the absorption
tail.

The superconductor differs from the normal state in that the density-

of-states function, p (E), does not show the continuous distribution
around the Fermi level in the form:

p (E) = constant x vE (403)
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but possesses discontinuities exhibiting a forbidden region on both sides
of the Fermi level.

In the theory of Bardeen, Cooper and Schrieffer (1957), a certain
minimum energy is required to produce an excitation from the ground state.
This minimum excitation energy, or the energy gap, is a central result
of the BCS theory. Existence of the predicted energy gap has been fully
verified, and is by now a popularly accepted fact. According to the
theory of BCS, the density-of-states function, &4(E), of a superconductor
is given by:

Z
On(o) [—22 i 62“

|z > ¢

o (E)

Mo~

(404)
-0 lz] < <

where By (0) is the density-of-states function of a normal metal evaluated
at the Fermi level, ¢ is (1/2) of the energy gap Eg which is a function
of temperature, and:

Z = (E - EF) (405)

It is seen that pg(E) increases very sharply at the gap edges, E = (Ef ! ¢).
The energy gap Eg(T) achieves its maximum value E,(0) at T = 0°K and de-
creases to zero as T is increased to T., the superconducting transition
temperature. In the region where E < Ef - ¢, all the electrons occur
paired and this part of the band is called the paired band. On the other
hand, the electrons in the region where E > E; + ¢ are unpaired, and this
part of the band is usually referred to as the unpaired band or the ''normal"
conduction band which bears no difference from the conduction band of a
normal metal. However, at a temperature T below T., most of the electrons
are paired, and very few are available in the unpaired band. Therefore,
most of the absorption will be due to these paired electrons. When the
paired electrons make transitions to the unpaired band, the energy absorbed
must be at least as much as that which is required to overcome the gap

E,: otherwise, no transition of this type is possible, since electrons

are forbidden in the gap. The BCS density-of-states function, pg (E),

is schematically illustrated in FIGURE 47. The typical temperature de-
pendence of E; is shown in FIGURE 48. For T > T., the metal is completely
normal, and absorptivity is fully described by the results obtained in
Table XIII. The curve showing the dependence of E_ on the magnetic field

H bears a close resemblance to that of FIGURE 48 wﬁen we replace T by H

and Tc by a certain critical field strength H.. Thus when H > H., the
metal is completely normal even if T < T., and the optical properties are
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satisfactorily described by the results obtained in VIII- (A) and also in
the preceding chapters.

The latest theory of optical dispersion in superconductors is due to
Mattis and Bordeen (1958), who calculate the frequency dependence of the
complex conductivity og of superconductor on the basis of the BCS theory.
Specifically, they calculate the ratios:

/

KO (w, p) CNV,“ ’ ( 7, (0,p)

oy being the high frequency conductivity of normal metal and p the photon
propagation momentum that is involved, and where g, and ¢, are defined as:

: = O + i
g T T P % (406)
Based on these results, Richards and Tinkham calculate the quantity:

AS RS
-1 -—= (407)

from the relations:

Z P N
S . \
Zn = Q o/al + i 02/14 (408)

Z =(1+i+4 3 ) R
n n

-

=
i

Re (Zn) (409)

7e}
I

Re (Z)

where Zg and Z, are the surface impedance of superconducting and normal
metals, and Ry and Rp are the respective surface resistance values.

These relations are applicable only in the extreme anomalous limit
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where all the contributions to the absorption and resistance come from
the surface effects in which the electrons absorb photons and collide
with the surface of the metal to conserve energy and momentum. Thus,
they do not include the possible contributions of the bulk where electrons
might absorb photons and emit phonons to conserve energy and momentum.

The bulk contribution of this kind has been found to be significant in
normal metals and was fully discussed theoretically in Section VIII,
paragraph A and preceding sections. That the bulk effects might also be
significant in a superconductor on account of the large electron-phonon
interactions that are present was suggested by Richards and Tinkham (1960)
following the similar suggestion by Holstein (1952) for a normal metal.

Richards and Tinkham compared the experimental absorption-edge curves
for superconducting lead and tin with the curve predicted by the theory
of Mattis and Bardeen. The comparison shows that although they agree
qualitatively as far as the shape of the absorption-edge is concerned,
the theoretical values are much greater than the measured values. Further,
the theoretical curve tails off much slower than the observed edge. This
is shown in FIGURE 50 where rg, is plotted against the ratio (w/w,) for
W greater than w, = (E,/). At the present, no positive explanations
are available on the discrepancy between the theoretical and experimental
absorption edges shown in FIGURE 50. Since the theoretical curve of Mattis
and Bradeen is obtained by considering the anomalous skin effects only,
it might perhaps be worthwhile to follow the suggestion of Richards and
Tinkham and compute the bulk contributions to the absorptivity. If the
bulk contribution is significant at all, it could very well effect in re-
ducing the theoretical values of Mattis and Bardeen, although it is not
certain as to whether the magnitude of the bulk absoprtion is of the right
order as to bridge the gap between the theory and experiment. TFor w < W >
Schrieffer (1959) derived the formula:

1
i
|

(410)

r

(1- rsn]; hw _
e [(Ei - &2 (Eg - &%) W 2
3

from the BCS theory assuming a symmetric electron-phonon interaction co-
efficients. This formula applies in the spectral range of % w, <w < wg
and differs from zero only for T > 0°K. Richards and Tinkham %1960)
checked this formula in the above spectral range and found good agreement
with the experimental absorption data. Equation (410) is plotted in
FIGURE 49. It is shown that rg, rises slowly with increase in w and is
smaller than unity only by a small fraction. Experimental curves of rgp
shown that the rise of rg, with increase in w is pronounced in some
superconductors such as the transition metals vanadium and indium while
others have a nearly flat ry, for w < w,. At any rate, it is certain
that the rg, curves do have their peaks, which are very likely to be dis-
continuous because of the discontinuity of pg at the gap edges, at w = Wg
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and tails off rapidly as w is increased further beyond W+

In what follows, we shall do our calculations for the bulk absorptivity
only for w > wg and at T= 0°K. The theoretical method is essentially the
same as in the preceding sections, and the difference will be in that we
now have to use the new density-of-states function, pg (E), that is offered
by the BCS theory.

The density-of-states function, pg, and the Fermi function, F(E) de-
fine the number of electrons per unit volume by the relation:

o
n = n_ +n +
-C +OO
‘ 1
=2[f dz+/szs(z)F(z)1
-0 ‘+€ -
: 2= (E - Ep) (411)

where n_ is the number of paired electrons per unit volume and n, is the
number of unpaired electrons per unit volume. At 0°K, we have n, = 0 and
the second integral vanishes.

Probability per unit time and per unit energy range that an electron

initially at the state, E;, makes a transition to the final states in the
range, Eo—>»(Ey +dEp), is given by:

1
i;g « P (E;—E5) Pg (E5) [ 1 - F (Ep) J (412)

and hence:
P(E) m\/thZ Dg (E5) { 1-PF (Ez)] P (El—e-Eg) (413)

Similarly, the average of P (El) over all the initial states is given
by:

® ocfdel dE, 8, (E1) o, (Ez) F (E;) [ 1-F (Eg)]P(El—,EZ) (414)
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where it is implicit that the surface integrals have already taken care
of the necessary requirements of conservation of energy and momentum.

Upon comparing Equations (413) and (414) with the corresponding equa-
tions for a normal metal in Chapter IV, it is readily shown that the ex-
pression for the power expenditure, Wg, of a superconductor will involve

the function F(r) in the form:
(s)
+ «
(r) 1 1 Jf 1 e
F (@) = = dx p . (x) p_(x+a) (415)
(s) B pN(O) J 1+ X X 78 s

where:

A= ( rEq + sthw)

We have only F(f; to consider and other three vanish at T=0°K. Further,

the integrand:

eX 1

X X+a
1 + e

(416)

is different from zero only for those values of w which satisfies the
inequality:

0<x<-a (417)

The possible values of x are further restricted due to the presence of the
energy gap: namely, the condition expressed by Equation (404):

Ix + aI s ,xl > B¢ (418)

for the product, p (x) pg (x+a), not to vanish. Combination of Equations
(417) and (418) immediately yields the inequality condition:

Be <x<-(a+ e) B

2 e<=-a (419)

The integral (415) thus reduces to the form:
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| 1y +al (420)

F E+) (q) %f dy
) , . 1
[(y2-€2) (y+a)=-¢) }2

For fiw < K @, we obtain the following expression for the power expenditure

per unit volume per unit time:

e? g2 N E2
Hs & =X P X
n M (R)&
(Hw-E ) (l‘iw- - €)
f £t de j dx ,XI = + g-ml (421)
o 1T N 2z
{:[ x> - €21 [ (x+ £ - hw)2-€1}-2

The absorptivity Ag is then readily obtained as:

(422)

m* R " Aw >
X = 60 ( K& > - rsn)

where:

X 'x + 8- 6@'

(hw-Eg) (Bw- - €) l ]
~ 6 ' N
(1 -r_) Tk f ¢ *ds dx 1 -
: {|:x - } [(x + §- Aw)2- } <
B

o
(423)
where R is exactly the same as Rep if we take:
n_+n = n_= n (424)
T = 0°K,

i.e., all conduction electrons are in the paired band at
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Fquation (423) is good only when the Umklapp processes and impurity
scattering can be ignored in the normal metal. Otherwise, we must use
the more general formula:

0
L Ree [/ ®0 >3 . 60 M / ke
e R \‘ HKw R Q\ﬁw

(Aw-Eg) hu- €- )
6 [ ‘
_(;ﬂ—w—)—s‘ J,w (;4d ¢ / dx X x + 0 - A

° € {[ x7 - 62} [ (x +& - ‘ﬁw)z -;2_\} % (425)

The integrals of Equations (417) and (419) are difficult to evaluate
exactly because of the discontinuity in the density-of-states functions.

However, a simple, and perhaps oversimplified, approximation can be
obtained upon noting that the first factor in the integrand represents
the density of states of the initial states and the second factor re-
presents that of the final states, and that, at T = 0°K, most transitions
may involve only those initial states which lie at the lower edge of the
gap: 1i.e.,

E; ¥ E_, - ¢, X ¢ (426)

This means that most of the contribution to the integral in Equation (421)
comes from the lower limit of the integral, although the apparent form

of the formula tends to show that the integrand has singularity at the
upper limit as well as at the upper limit as well-as at the lower limit.
The singularity at the upper limit has to do with the fact that most of
the electrons reaching the unpaired band as the result of transitions are
likely to crowd at the upper edge of the gap, where the density-of-states
function is large. We thus have:

F(E;) (q) = (ﬁw-Eq -€) > + ¢ (427)

where it is implicit that the integral in gq is to include only those values

which make E(;) >+ ¢. After some necessary mathematical steps, we find
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that rg, of Equation (423) reduces to the simple formula:

E = g E
_ N _ __g_>ﬁ g
l-Th N'<l fw <‘1 Y2 R >

Ay < K © (428)

The expresions for Ag and rgp of a transition metal may be obtained
in the same manner. In particular, for those transition metals which
have ag = 0, the formula for rg, which is equivalent to Equation (428)

is readily obtained as:
E 2 s -Es N2
_ 8 _ g\>
L -T Nl(\l Aw > <\1 <\6w J (429)

Equations (428) and (429), unfortunately, fail to improve the agree-
ment with the experimental values of FIGURE 50. For a more rigorous
comparison, however, we have to obtain a numerical solution to the com-
plete integral of Equation (423). This would certainly improve the
situation since the assumption that was adopted in obtaining the crude
solutions in Equations (428) and (429), was to restrict absorptive tran-
sitions to only those pairs lying at the edge of the gap, while the com-
plete integral takes into consideration the transitions of any electrons
in the paired band, thus increasing the value of (1 - rsn)




APPENDIX A.

CALCULATION OF Jz(a)

07
Ji(a) = // X dx/(ex-l) (l-e_x) : n>0
o
A << 1
[‘CC 7
o, \ n-~2 I A
Jn(a) ~ X dx i 1 5 * + ]
)
S SR A G
" n-1 12 nh1 :
B: a> 1
o0 o0
3@ ~ X ax -n
nOCwnl —?r_—l—n. . m
o m=1
e. g,

3% = 124. 4
5

C: General Calculation
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(L

(2)

(3

(4)

(3)
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The definite integral can be evaluated by the seties:

‘ n-1 -x -
,/ P dx (n-l):j{: (&'f) (6)
m=1

24,8861 ; n = 5

The indefinite integral can also be written as a series:

\ n
/————Xn-l e g -y fmmd an ( )-1 )
< 1 - ¥ r=i (n r)

Substitute Equatlons ), (6) and (7) into Equatlon (4):

JO(O‘)=[ T() - (nr)- EC m)

n
r=

SAGP)

(8)

o

D: Js(a)

From Equation (8), we compute the numerical values of Jo(a). For
small values of o s

1 . ‘
7 J2(@) = B + Bi0F + B0t + Bael® + Bsa® + BoiTH ... )
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B, = 0. 25000000

B, = -.01388889
B, = 0.00052083
By = -.00001653 (10)
B, = 0.00000096
Bg = -.00000003
This series is good to 8 places for @ = 1, and its accuracy
diminishes thereafter.
For somewhat larger values of @, let
\.1=l (oA
3
Then:

_éZ Jg(a) = D, + Dyu® + Dpu* +Dgu® + ... + Dgul® (11)
D, = 0. 250000
D, = -.125000
D, = 0.042188
Dy = -.012054
D, = 0,003164

(12)

Ds = -.000792
Dg = 0.000193
D, = -,000046
Dg = 0.000011

= -,000003

o]
©
I
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This series is good for & < 2 and diverges for & > 2x , and should
not be used for values of ¢ much larger than 3 so that the last terms
contribute significantly.
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APPENDIX B.

CALCULATION OF by, ()

In the limit of hw >> K& , the quantum correction factor bep(p,a)

becomes;
= )/J‘;(a)] )
e -1

With the help of Appendix I, we evaluate %ep(a) numerically for
o < 27

T o) = |14 22
bep(u) = [5 + S (1/2 +

For small values of

~ 1 Ay + A0F + A* + A0° + AP
bep(@® = —= + -9 e n “—s s 10 (2)
By, + By0® + B0* + Bga® + BLo® + Bs
where:
A, = 0.20000000
A, = 0.01666667
As = -.00027778 (3)

A5 = 0.00000661

Ay = -.00000017

and the B-series are the same as in Equation (9).

The A series are the quantity:

o
& I \~ 2m
5 <E/2 + = :>- j{j Ama 4)
e -1
m=0
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For somewhat larger values of &, let

u=1/3 o
Then:
N b= 4 8 16
bep(@’) ; + Co *Cyu + Cou* + Cqu® + ... + Cgu (%)
Dy, + Dju® + D-u* +Dgu® + ... + Dgul®
a < 2n
’OO
T 2m O 1
), Cm o =TQ/2+Q> (&)
— e -1
m=o0
Co = 0. 200000
C, = 0. 150000
Co = -.022500
Cy = 0.004821
C, = -.001085 (7)

Cs = 0.000247
Cg = -.000056
C, = 0.000013
Cg = -.000003
and the D-series are the same as in Equation (11).

Similarly, it can be evaluated for & > 2n when the formulate of
Appendix are used.

For « = 17, for instance, we obtain:

~ 1 o5
bep@ = (:} + 1244.31;> (8)
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APPENDIX C.
INTEGRALS J (1, and Kn(u,a)

A: General Expression for Jn(u,@’)

07
Jn(i*l)a) = f x" dx/ (ex - e"D (eu - G_O : n>0 (D)
o

We will use the relation:

1 _ e ™ L 1 ]
(ex - 1> (ex+2_u - l) (eg'u - 9 e -1 eX+2u-l
o

Q
" m m+1
x d X 1 1 o
/ X = = X + T Jm+l(a)
o e -1 m+ 1 e -1 o m+1
where:
m+3 o m> o
X —_—
eX-l x=0 1 m = O

Then, for n > 0:

n n ’
\ 1 T 1 a-m - )m+1_
e A W i
-1 m+, m e -1

e m=o
) m+y m+21
+ (T _é%um— - (DT e E— (2)
e -1 e-1
o) n-m+l _o m+2 n+i{ .o ()
M CED L G R Y € IR YR S U CEN e S
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B: General expression for Kn (e,

a
R d/( ' 9 @ ’ ) < ' ) )

(o]

We split the three factors as follows:

1 ) e 1 i 1
(ex-e5 <eu-e_> qu- l> S | eXﬁi_ 1
L _ e ® |

<ex_ l)éXtu'D <etu_9 Ko extp_ 1

S R S N LJ
ex(ex-l) -1 e®

and use the relation:

‘ " xm+l 1 1
dx = + — J[(:H_ (@)
o e -1 m+1 e -1 m+1 1
o]
Then:
-p L M vl
Kn(p,a) = me / x"e Fdx xiu + x? - (}1{+e )
(e™M-1) ("-1) g | e Mol et -1
-l & H-X No ! -X
= s D / (x—p)n dx i—— + / (x-ip)n dx
(e%-1) (e o e -1 n e -1
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From this, we have:

n
K_(u,0) = - ;ﬂ = “:> Thas GG R )™
n™’ (e M-1) ("-1) m_=—é) mt \w ot g

e

-1 e M1 e M1
- (m+l) [(_l)n_m e“’ gm(OH'H;U) + gm(a-uyuﬂ

L CEV A [J:;H(Oém) - s;ﬂ(u)] + [J;H(Ot-u)

+1 o (l-i-e“) an+1
+ (1"t (u)] -
mt2 n+1 ea -1
I
R L C I I gr,(a,O)]] (%)
where:
a
6 (a,b) = x" e T dx
[
n a
= - e-xz x0T F n(n-1) ... (n-r+l) (5)
r=0 b

C: Jn(M,O!) and Kn(u,a) at low temperature,
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We shall evaluate these integrals for two cases,
[i] a@>> p> 1 (Ko > hw>> KT)

[fi] o>>u, w0

For the other limiting case of u > > «, Equation (1) of Appendix
is applicable,

From Equations and , we obtain the following simplified
expressions:
1 m n
. -z nhl (-1
[1] Jn (CX,}J.) ~ € M }‘: m41 <m> (6)
m=0
. 0
~ ol 1
Kn(u,a) =~ [n. 1 + | n+1>
s=1 S
(7
1 n-+m n —
+ (G2 M (m+1) ! nom L
/. m+1 : o M Lo m+l
m=0 =
a>>u >> 1
(] 3w~ —— {u 0 +pe 2 50 @)
n? Mo n 3t n-2

(8)

pus 2@ g0 @7 2R (9) g e
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’ n
n+1 : m+1 n
K_(@n) ~ L - g %— <w> 14+(-1)"
(e2“-1)(1—e u) e-1 5:5
n [+
n-m n - e 1
' - -
+ . L_m+1 (m+1) . e "+ (-1) }: — 1
=0 s=1 s

-n! (L +e™ 1+Zﬁl—> (9)
s=3 s

o a>> H, p>0

where JOQ») is given by Equation (3) of Appendix . Equations (6),
(7, (8? and (9) are sufficient to enable us to calculate bep(u,ob at very
low temperatures even in the very far infrared,
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APPENDIX D.

ON THE QUESTION OF EXISTENCE OF
Cos®6 < 1 AT THE SINGULARITY ¢ =0

The theoretical calculations of the transition probability rested
on the assumption that there exists a cos®d which satisfies the con-
dition;

5() =1,
and hence;
¢ = E(k+trg) - E(k) - rE(g) - shw =0 (1)
; r,s = (%)
and:
cos6 = (k" g/k q) (2)

The existence of such a cosf was asserted by Wilson (1936) for
the processes which do not involve an external electromagnetic field.

We shall show that such a cosf exists also in the presence of the
electromagnetic field,

From Equation (1), we have:

_ il mew m*ul) 9
cos@ = [sr kg + <hk) r 2k] (3)

In comparing the order of magnitude of the three terms on the
R.H.S. of Equation (3), we shall use the typical values:
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-7

m* ~ 10 (Q

u 5

L ~ 103 (cm/sec)
v

F ~ 108 (cm/sec)

fal
]

' K 108 -1 ~ 2 o
_(\h u1¥> ~108 (cm ') for 102 °K

The first term is rewritten as:

* () c 1
B0

and the second term as:

m*ul, _ UL\ -3
° T <h9 —Qb) = ®

At ordinary and higher temperatures, the phonons with q = q, are
active, and hence we have:

A< (em)107°  for A > Lu

In this case, the third term is the only important one, and any
q equal to or smaller than (2kF) gives us cosé < 1 satisfying the
condition (1). Thus, we have

- (6)
4o ) ° .
;> pooq < 2Zkg

In general, the second of the above two applies. When q, > ZkF, the
integral over q must be cut off at q=2kF.

T
A\
—
Nel
\v
N
~

O
Q
wm
N}
D
IN
[
~
»
M
o
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The scattering angle ¢ is defined as:

> ’?'
cos ¢ (} . k//k %:> (7)
->1 N
k <} + ra?+ s€>
>
~{k + r§>

Then, ¢ is related to § by the relation:

k<1+r§cos€9 (8)

. %
(%2 + q¢ + 2r coia cos®

Then, upon writing:

o= () (aﬂvc)
1
kF ~ (2n) <? T Vé) 3

we easily see that the second condition of Equation (6) corresponds
to

b

(9

Na
I

=
I

¢ < 78.1

in agreement with the usual value of 79° for elastic scattering
(k' = k), and that the first condition of Equation (6) corresponds to
0 < ¢ < n, thus scatterings are possible for all angles.

At low temperatures, the phonons with
h uq > KT (10)

are active, and it is easily seen in Equation (3) that the first term
(e.m, -phonon term) can be the most important one. For such a case,
we have

for A lu.,

=
14Y2

A g
and hence

cos®6 < Eé— ;0 A> lu (11)

so that for T > 1°K, it is assured that a cos®c ¢ l exists.
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